已知函数f(x)=ax^2+bx+c,a为正整数,b为自然数,c为整数
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 23:51:19
已知函数f(x)=ax^2+bx+c,a为正整数,b为自然数,c为整数
若对任意实数x,不等式4x
若对任意实数x,不等式4x
4x ≤ f(x) ≤ 2(x^2 + 1) 即
ax^2 + (b-4)x + c ≥ 0 [1]
(2-a)x^2 - bx + (2-c) ≥ 0 [2]
注意[1][2]都是恒成立的,所以a > 0且2 - a > 0,因为a是正整数,所以a = 1.
[1][2]变为
x^2 + (b-4)x + c ≥ 0 [3]
x^2 - bx + (2-c) ≥ 0 [4]
[3][4]恒成立的条件是它们的Δ都≤0.
Δ3 = (b-4)^2 - 4c ≤ 0,
Δ4 = b^2 - 4(2-c) ≤ 0,
即
(b-4)^2 ≤ 4c ≤ 8 - b^2.[5]
再看看(b-4)^2和8-b^2之间到底相差多少.
8 - b^2 - (b-4)^2 = -2b^2 + 8b - 8 = -2(b-2)^2 ≥ 0,所以b = 2.
这样,[5]变为
4 ≤ 4c ≤ 4,所以c = 1.
代入验证,f(x) = x^2 + 2x + 1 = (x + 1)^2,满足所有条件.
ax^2 + (b-4)x + c ≥ 0 [1]
(2-a)x^2 - bx + (2-c) ≥ 0 [2]
注意[1][2]都是恒成立的,所以a > 0且2 - a > 0,因为a是正整数,所以a = 1.
[1][2]变为
x^2 + (b-4)x + c ≥ 0 [3]
x^2 - bx + (2-c) ≥ 0 [4]
[3][4]恒成立的条件是它们的Δ都≤0.
Δ3 = (b-4)^2 - 4c ≤ 0,
Δ4 = b^2 - 4(2-c) ≤ 0,
即
(b-4)^2 ≤ 4c ≤ 8 - b^2.[5]
再看看(b-4)^2和8-b^2之间到底相差多少.
8 - b^2 - (b-4)^2 = -2b^2 + 8b - 8 = -2(b-2)^2 ≥ 0,所以b = 2.
这样,[5]变为
4 ≤ 4c ≤ 4,所以c = 1.
代入验证,f(x) = x^2 + 2x + 1 = (x + 1)^2,满足所有条件.
二次函数f(x)=ax²+bx+c ,a为正整数,c≥1,a+b+c≥1,方程ax²+bx+c=0有
1、二次函数f(x)=ax^2+bx+c,a为正整数,c≥1,方程a+b+c≥1,方程ax^2+bx+c=0有两小于1的
已知二次函数f(x)=ax^2+bx+c(a.b.c属于R) f(-2)=f(0)=0 f(x)的最小值为-1
已知二次函数f(x)=ax²+bx+c(a,b,c∈R),f(-2)=f(0)=0,f(x)最小值为-1
设二次函数f(x)=ax^2+bx+c中的a,b,c均为整数,且f(0),f(1)均为奇数,求证:方程f(x)=0无整数
设二次函数y=ax∧2+bx+c中的a,b,c为整数,且f(0),f(1)均为奇数,求证,方程f(x)无整数根
设函数f(x)=ax²+1/bx+c是奇函数,a,b,c均为整数,且f(1)=2,f(2)<3 求a,b,c的
已知随机变量X的密度函数为f(x)=ax^2+bx+c 0
【函数】已知f(x)=ax^+bx=c是偶函数,定义域为[a-1,2a],则a=
已知二次函数f(x)=ax^2+bx+c(a,b,c∈R)的最小值为-1,且关于x的一元二次不等式ax^2+bx+c>0
已知二次函数f(x)=ax^2+bx+c(a-2x的解集为(1,3)
已知函数f(x)=ax^4lnx+bx^4-c(x >0)在x=1处取得极值-3-c,其中a,b为常数