a1=1 an=2an-1+2n 求a2.a3 求证an/2n是等差数列 求数列an的前n项之和Sn
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/19 04:28:18
a1=1 an=2an-1+2n 求a2.a3 求证an/2n是等差数列 求数列an的前n项之和Sn
an =2a[n-1]+2^n ①
a1=1
a2=2a1+2^2=2+4=6
a3=2a2+2^3=20
an=2a(n-1)+2^n
二边同除以2^n
an/2^n=a(n-1)/2^(n-1)+1
即an/2^n-a(n-1)/2^(n-1)=1
所以,{an/2^n}是一个首项是a1/2=1/2,公差是1的等差数列.
an/2^n=1/2+(n-1)*1
即an=2^n*(n-1/2)=n*2^n-2^(n-1)
Sn=1*2+2*2^2+...+n*2^n-(1+2+2^2+...+2^(n-1))
设Tn=1*2+2*2^2+...+n*2^n
2Tn=1*2^2+2*2^3+...n*2^(n+1)
Tn-2Tn=-Tn=2+2^2+2^3+2^n-n*2^(n+1)=2(2^n-1)/(2-1)-2n*2^n=2*2^n-2-2n*2^n=(2-2n)*2^n-2
即Tn=2-(2-2n)*2^n
所以,Sn=2-(2-2n)*2^n-1*(2^n-1)/(2-1)
=3-(1-2n)*2^n
a1=1
a2=2a1+2^2=2+4=6
a3=2a2+2^3=20
an=2a(n-1)+2^n
二边同除以2^n
an/2^n=a(n-1)/2^(n-1)+1
即an/2^n-a(n-1)/2^(n-1)=1
所以,{an/2^n}是一个首项是a1/2=1/2,公差是1的等差数列.
an/2^n=1/2+(n-1)*1
即an=2^n*(n-1/2)=n*2^n-2^(n-1)
Sn=1*2+2*2^2+...+n*2^n-(1+2+2^2+...+2^(n-1))
设Tn=1*2+2*2^2+...+n*2^n
2Tn=1*2^2+2*2^3+...n*2^(n+1)
Tn-2Tn=-Tn=2+2^2+2^3+2^n-n*2^(n+1)=2(2^n-1)/(2-1)-2n*2^n=2*2^n-2-2n*2^n=(2-2n)*2^n-2
即Tn=2-(2-2n)*2^n
所以,Sn=2-(2-2n)*2^n-1*(2^n-1)/(2-1)
=3-(1-2n)*2^n
1.已知数列{an}是等差数列,a1=2,a1+a2+a3=12,令bn=3^an,求数列{bn}的前n项和Sn.
设数列{an}的前n项和为Sn,并且满足2Sn=an²+n,an>0.(1)求a1,a2,a3.(2)猜想{a
数列{an}前n项和Sn=npa[n](n是正整数),且a1不等于a2,(1)求p的值(2)证明{an}为等差数列
在各项为正的数列{an}中,数列的前n项和Sn满足Sn=2分之一(an+an分之一),(1)求a1,a2,a3.
已知数列{an}中,a1=1,前n项和sn=(n+2)an/3,求a2,a3求{an}的通项公式
设数列an的前n项和为Sn,a1=1,an=(Sn/n)+2(n-1)(n∈N*) 求证:数列an为等差数列,
数列an满足sn=3an-1/2 计算a1,a2,a3,a4 猜an通项 求an前n项和sn
设数列{an}的前n项和为Sn,满足2Sn=an+1-2^(n+1)+1,且a1,a2+5.a3成等差数列,求数列{an
已知数列{an}是等差数列,a1=1,a1+a2+a3=12.令bn=3^an,求数列{bn}的前n项和sn.
已知数列{an}的前n项之和sn=2-n^3,求和|a1|+|a2|+|a3|+.+|an|
等差数列{an}中,a1+a2+a3=21,an-2+an-1+an=57,Sn=520,求n.
已知数列{an}前n项和Sn=n^2,记Pn=1/(a1*a2)+1/(a2*a3)+...+1/(an*an+1),求