作业帮 > 数学 > 作业

是否存在实数k和锐角α,使得sinα、cosα是方程4x^2-4kx+2k-1=0的两根,如果存在,求出k和α的值;如果

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 15:48:51
是否存在实数k和锐角α,使得sinα、cosα是方程4x^2-4kx+2k-1=0的两根,如果存在,求出k和α的值;如果不存在,请说明理由.
是否存在实数k和锐角α,使得sinα、cosα是方程4x^2-4kx+2k-1=0的两根,如果存在,求出k和α的值;如果
∵Δ=16k²-16(2k-1)
=16k²-32k+16
=16(k-1)²≥0
∴原方程有两根.
若sinα、cosα是方程4x^2-4kx+2k-1=0的两根
则sinα+cosα=k
sinα*cosα=(2k-1)/4
得sin²α+cos²α+2sinα*cosα=k²
∴1+(2k-1)/2=k²
解得k=(1±√3)/2
∴原方程为4x²-2(1+√3)x+√3=0
或4x²-2(1-√3)x-√3=0
(2x-√3)(2x-1)=0
或(2x+√3)(2x-1)=0
得x1=√3/2,x2=1/2
或x1=-√3/2,x2=1/2
即锐角α=30º或60º