作业帮 > 数学 > 作业

双曲线Y=3/X经过四边形OABC的顶点A、C 角ABC=90度 OC平分oa与X轴正半轴的夹角 ab平行于X轴

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 20:49:41
双曲线Y=3/X经过四边形OABC的顶点A、C 角ABC=90度 OC平分oa与X轴正半轴的夹角 ab平行于X轴
将三角形ABC沿AC翻折后得到三角形AB’C 点B‘落在Ac 上 则四边形OABC的面积为?
双曲线Y=3/X经过四边形OABC的顶点A、C 角ABC=90度 OC平分oa与X轴正半轴的夹角 ab平行于X轴
过点B作BD⊥X轴与点D,由翻折可知BC=B’C
又由角平分线上的点到角两边的距离相等可知DC=B’C
所以可设点A的坐标为A(m,3/m),
则由DB=3/m,可知CD=BD/2=3/2m
所以点C的坐标为C(2m,3/2m),
所以S(四边形OABC)=S(梯形OAB)-S(三角形OCD)
=DB*(AB+OD)/2-CD*OD/2
=(3/m)*(m+2m)/2-(3/2m)*(2m)/2
=9/2-3/2
=3