如图,直线y=2x与双曲线y=8x交于点A、E,直线AB交双曲线于另一点B(2m,m),连接EB并延长交x轴于点F.
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/17 06:14:35
如图,直线y=2x与双曲线y=
8 |
x |
(1)∵点B(2m,m)在双曲线y=
8
x上,
∴2m•m=8,解得m=±2,而m>0,
∴m=2.
故答案为2;
(2)m=2,则B点坐标为(4,2),
解方程组
y=2x
y=
8
x得
x=−2
y=−4或
x=2
y=4,
∴A点坐标为(-2,-4),E点坐标为(2,4),
设直线AB的解析式为y=kx+b,
把A(-2,-4),B(4,2)代入得:-2k+b=-4,4k+b=2,解方程组得k=1,b=-2,
∴直线AB的解析式为y=x-2;
(3)设直线EB的解析式为y=kx+b,
把E(2,4),B(4,2)代入得:2k+b=4,4k+b=2,解方程组得k=-1,b=6,
∴直线EB的解析式为y=-x+6,
令y=0,则-x+6=0,得x=6,即F点的坐标为(6,0),
∴△EOF的面积=
1
2×6×4=12;
(4)满足条件的点P的坐标为(-4,-2)、(0,-6)、(8,10).
8
x上,
∴2m•m=8,解得m=±2,而m>0,
∴m=2.
故答案为2;
(2)m=2,则B点坐标为(4,2),
解方程组
y=2x
y=
8
x得
x=−2
y=−4或
x=2
y=4,
∴A点坐标为(-2,-4),E点坐标为(2,4),
设直线AB的解析式为y=kx+b,
把A(-2,-4),B(4,2)代入得:-2k+b=-4,4k+b=2,解方程组得k=1,b=-2,
∴直线AB的解析式为y=x-2;
(3)设直线EB的解析式为y=kx+b,
把E(2,4),B(4,2)代入得:2k+b=4,4k+b=2,解方程组得k=-1,b=6,
∴直线EB的解析式为y=-x+6,
令y=0,则-x+6=0,得x=6,即F点的坐标为(6,0),
∴△EOF的面积=
1
2×6×4=12;
(4)满足条件的点P的坐标为(-4,-2)、(0,-6)、(8,10).
如图,直线y=2x与双曲线y=8/x相交于点A、E,直线AB与双曲线交于另一点B,与x轴、y轴分别交于点C、D直线EB交
如图,已知直线L1:y=/2x+1与x轴交于点A,过点A的另一直线L2与双曲线y=-8/x(x>0)相交于点B(2,m)
如图,直线y=2x-8与坐标轴交于A,B两点,与双曲线y=24/x交于M点,直线CD与AB平行,交双曲线与N点
如图1,直线y=-12x+1交x轴于点A,交y轴于点B,C(m,-m)是直线AB上一点,双曲线y=kx经过C点.
如图,直线Y=KX+2K(K不等于0)与X轴交于点B,与双曲线y=(m+5)x^(2m+1)交于点A.C,其中点A在第一
已知直线Y=1/2X+2与X轴交于点A,与Y轴交于点B,与双曲线Y=M/X交于点C,CD垂直X轴于D,
1、如图,直线y=kx+2k (k≠0)与x轴交于点B,与双曲线y=(m+5)x2m+1交于点A、C,其中点A在第一象限
如图,已知直线y=x-2与双曲线y=kx(x>0)交于点A(3,m).
如图,直线y=-2x-2与双曲线y=kx(k≠0)交于点A,与x轴、y轴分别交于点B,C,AD⊥x轴于点D,如果&nbs
初二反比例函数题;如图,直线y=-1/2x+1分别于x轴、y轴交于a、b两点,双曲线y=k/x与直线ab交于p点
如图,直线y=-x-k-1与双曲线y=k/x交于A.C两点,AB⊥x轴于B,直线交x轴于点D.已知S△ABO=3/2,求
如图,直线y=kx+2与x轴、y轴分别交于点A、B,点C(1,a)是直线与双曲线