若直线mx+ny-3=0与圆x2+y2=3没有公共点,则m、n满足的关系式为______;以(m,n)为点P的坐标,过点
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/06 08:32:36
若直线mx+ny-3=0与圆x2+y2=3没有公共点,则m、n满足的关系式为______;以(m,n)为点P的坐标,过点P的一条直线与椭圆
x
(1)将直线mx+ny-3=0变形代入圆方程x2+y2=3,消去x,得
(m2+n2)y2-6ny+9-3m2=0.令△<0得m2+n2<3. 又m、n不同时为零, ∴0<m2+n2<3. (2)由0<m2+n2<3,可知|n|< 3,|m|< 3, 再由椭圆方程a= 7,b= 3可知公共点有2个. 故答案为0<m2+n2<3,2
已知圆x2+y2+4x+2y+1=0上任意点关于直线mx+ny+1=0(m>0,n>0)的对称点均在圆上,则1m+1n
设定点M的坐标为(-3,4),动点N在圆x2+y2=4上运动,以OM、ON为两边作平行四边形MONP,求点P的轨迹方程.
连续掷两次骰子,以先后得到的点数m,n作为点P(m,n)的坐标,那么点P落在圆x2+y2=17外部的概率为 ___ .
已知点P(2,2),圆C:x2+y2-8y=0,过点P的动直线l与圆C交于A、B两点,线段AB的中点为M,O为坐标原点.
已知点P(2,2),圆C:x2+y2-8y=0,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点.
已知点P(2,2),圆C:x2+y2-8y=0,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点
已知直线l:mx+ny-1=0(m,n∈R*)与x轴相交于点A,与y轴相交于点B,且直线l与圆x2+y2=4相交所得弦长
连续掷两次骰子,以先后得到的点数m,n作为点P(m,n)的坐标,那么点P落在圆x2+y2=17外
若实数m,n,x,y满足m2+n2=a,x2+y2=b(a≠b),则mx+ny的最大值为 用基本不等式
连续掷两次骰子,以先后得到的点数m,n为点P(m,n)的坐标,设圆Q的方程为x2+y2=17.
若直线3x+4y+m=0与圆x2+y2-2x+4y+4=0没有公共点,则实数m的取值范围是______.
已知圆C的方程为x2+y2=1,点A的坐标是A(2,0),过点A的直线与圆交于P.Q两点,求PQ的中点M的轨迹方程
|