已知定点A(0,1),B(0,-1),C(1,0),动点p满足向量*向量BP=k|向量PC|平方
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 17:57:54
已知定点A(0,1),B(0,-1),C(1,0),动点p满足向量*向量BP=k|向量PC|平方
当k=2时,|2向量AP+向量BP|的最值
当k=2时,|2向量AP+向量BP|的最值
设P(x,y)
由:向量AP 点乘 向量BP = K,K=(向量PC)²
得:
(x,y-1)(x,y+1)=(1-x,-y)²
x²+y²-1=(1-x)²+y²
化简得:
x=1,即动点P的方程.动点P是直线(过(1,0)点,平行于y轴)
2.K=2时:
x²+y²-1=2
x²+y²=3
此时,动点P轨迹是圆,圆心在坐标原点,半径√3.
同时可得到x,y此时的定义域,都是(-√3,√3).
目标函数f
=|2(向量AP)+向量BP|
=|2(x,y-1)+(x,y+1)|
=|(3x,3y-1)|
=√(9x²+9y²+1-6y)
=√(27+1-6y) …… …… x²+y²=3代入
=√(28-6y)
所以此函数f的单调性仅跟变量y相关,是关于y的减函数.
当y=√3时,f有最小值,f=√(28-6√3)
当y=-√3时,f有最大值,f=√(28+6√3)
由:向量AP 点乘 向量BP = K,K=(向量PC)²
得:
(x,y-1)(x,y+1)=(1-x,-y)²
x²+y²-1=(1-x)²+y²
化简得:
x=1,即动点P的方程.动点P是直线(过(1,0)点,平行于y轴)
2.K=2时:
x²+y²-1=2
x²+y²=3
此时,动点P轨迹是圆,圆心在坐标原点,半径√3.
同时可得到x,y此时的定义域,都是(-√3,√3).
目标函数f
=|2(向量AP)+向量BP|
=|2(x,y-1)+(x,y+1)|
=|(3x,3y-1)|
=√(9x²+9y²+1-6y)
=√(27+1-6y) …… …… x²+y²=3代入
=√(28-6y)
所以此函数f的单调性仅跟变量y相关,是关于y的减函数.
当y=√3时,f有最小值,f=√(28-6√3)
当y=-√3时,f有最大值,f=√(28+6√3)
已知定点A(0,1),B(0,-1),C(1,0),动点P满足:向量AP*向量BP=k|向量PC|^2
1,已知定点A(0,1),B(0,-1),C(1,0),动点P满足:向量AP*向量PB=k*向量|pc|*向量|pc|.
圆与向量已知定点A(0,1)、B(0,-1)、C(1,0),动点P满足向量AP*向量BP=K*(绝对值向量PC)^2.当
高二上期期末数学题1.已知A(0,1)B(0,-1)C(1,0)与动点P满足 AP向量乘以BP向量=K倍PC向量的平方(
圆锥曲线中的最值问题已知定点A(0,1) B(0,-1) C(1,0),动点P满足"向量AP*向量BP=k*向量CP绝对
已知A(-1.o),B(1.0),c(1/2.0),a大于b 大于0,动点p满向量PA×向量PC+向量PB×向量Pc=0
已知向量a=(1,1/2),向量b=(0,-1/2),向量c=向量a+k*向量b,向量d=向量a-向量b,向量c与向量d
已知点A(4,0)B(1,0),动点P满足向量AB*向量AP=向量PB的模,求P的轨迹C的方程
1、已知A、B、C是平面上不共线的三点,O为△ABC的外心,动点P满足向量OP=【(1-k)向量OA+(1-k)向量OB
已知两定点A(1,0),B(-1,0),动点P在Y轴的射影为Q,若向量PA乘向量PB+PQ的平方=0(1)求动点P的轨迹
若O为平面内一点,A、B、C是平面上不共线三点,动点P满足向量OP=向量OA+λ(向量AB+1/2向量BC)λ∈(0,+
O是平面上一点,A,B,C是平面上不共线三点,动点P满足向量OP=向量OA+λ((向量AB+向量AC),λ∈[0,1/2