随机变量x1,X2,...Xn相互独立的问题:
设随机变量X1,X2,...Xn相互独立,且都服从数学期望为1的指数分步,求Z=min{X1,X2,...Xn}的数学期
一道概率题设随机变量X1,X2,...Xn相互独立,且都服从(0,1)上的均匀分布.求U=max{X1,X2...Xn}
设随机变量X1,X2,…Xn相互独立,且都服从(0,θ)上的均匀分布.求U=max{X1,X2,…Xn}数学期望
概率论,已知随机变量X1,X2,X3,…Xn(n>1)相互独立且同分布
数理统计基本概念问题书中给出定义:若X1,X2,…,Xn为F的一个样本,则X1,X2,...,Xn相互独立且他们的分布函
设X1,X2...Xn 独立同分布的随机变量,证明X=(1/n)* ∑Xi 和∑(Xi-X)^2 相互独立.
设随机变量X1,X2...Xn相互独立同分布,服从B(1,p),则E(Xk∑Xi)=?其中Xk为X1,X2...Xn中的
X1,X2...Xn相互独立,都为参数为a的指数分布,求X1+X2+...+Xn的分布?
设X1,X2……Xn是相互独立的随机变量序列且他们服从参数λ的泊松分布,则由中心极限定理知
关于概率论的2道题目1、设随机变量X1,X2,…Xn相互独立,且X1,X2,…Xn都有[0,a]上服从均匀分布,记U=m
已知随机变量X1,X2……Xn相互独立,且每个Xi的期望都是0,方差都是1,令Y=X1+X2+……+Xn,求E(Y^2)
设随机变量X1,X2,…Xn相互独立,且都服从(0,1)上的均匀分布.问:(1)求U=max{X1,X2,…Xn}数学期