作业帮 > 数学 > 作业

定义在(-1,1)上的函数f(x)满足对任意的x,y属于(-1,1),都有f(x)+f(y)=f[(x+y/(1-xy)

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 13:51:14
定义在(-1,1)上的函数f(x)满足对任意的x,y属于(-1,1),都有f(x)+f(y)=f[(x+y/(1-xy)
定义在(-1,1)上的函数满足对任意的x,y属于(-1,1),都有f(x)+f(y)=f[(x+y/(1-xy),则f(x)的奇偶性为-------【详解】
定义在(-1,1)上的函数f(x)满足对任意的x,y属于(-1,1),都有f(x)+f(y)=f[(x+y/(1-xy)
依题f(0)+f(0)=f[0/(1-0)]=f(0),则f(0)=0
f(x)+f(-x)=f[(x-x/(1+x*x)]=f(0)
所以f(x)+f(-x)=0,即f(x)=-f(-x)
所以f(x)为奇函数