如图,四边形ABCD中,∠ABC+∠D=180°,AC平分∠BAD,CE⊥AB于E,CF⊥AD于F.
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/13 00:39:02
如图,四边形ABCD中,∠ABC+∠D=180°,AC平分∠BAD,CE⊥AB于E,CF⊥AD于F.
试说明:
(1)△CBE≌△CDF;
(2)AB+AD=2AF.
试说明:
(1)△CBE≌△CDF;
(2)AB+AD=2AF.
证明:(1)∵AC平分∠BAD,CE⊥AB,CF⊥AD,
∴CE=CF,
∵∠ABC+∠CBE=180°,∠ABC+∠D=180°
∴∠CBE=∠D,
在△CBE与△CDF中,
∠CBE=∠D
∠BEC=∠CFD
CE=CD
∴△CBE≌△CDF(AAS);
(2)∵△CBE≌△CDF(AAS),
∴BE=DF,
∵CE⊥AB,CF⊥AD,
∴∠E=∠AFC=90°,
在Rt△AEC与Rt△AFC中,
AC=AC
CE=CF
∴Rt△AEC≌Rt△AFC(HL),
∴AE=AF,
∴AB+AD=AE+AF,
∴AB+AD=2AF.
∴CE=CF,
∵∠ABC+∠CBE=180°,∠ABC+∠D=180°
∴∠CBE=∠D,
在△CBE与△CDF中,
∠CBE=∠D
∠BEC=∠CFD
CE=CD
∴△CBE≌△CDF(AAS);
(2)∵△CBE≌△CDF(AAS),
∴BE=DF,
∵CE⊥AB,CF⊥AD,
∴∠E=∠AFC=90°,
在Rt△AEC与Rt△AFC中,
AC=AC
CE=CF
∴Rt△AEC≌Rt△AFC(HL),
∴AE=AF,
∴AB+AD=AE+AF,
∴AB+AD=2AF.
如图四边形ABCD中,AC平分∠BAD,CE⊥AB于E,且∠B+∠D=180°,求证:AE=AD+BE
已知:如图,AD平分∠ABC,BE⊥AC于E,CF⊥AB于F,BE、CF相交于点D,求证:BF=CE
如图,四边形ABCD中,AB∥CD,AC平分∠BAD,CE∥AD交AB于E.
已知:如图,在四边形ABCD中,AC平分∠BAD,CE⊥AB于E,且∠B+∠D=180°,求证:AE=AD+BE.
已知:如图,在四边形ABCD中,AC平分∠BAD,CE⊥AB于E,且∠B+∠D=180°,求证:AE=AD+BE.
如图在四边形ABCD中,AC平分∠BAD,∠ADC+∠ABC=180°,CE⊥与AD于E,猜想AD、AE、AB的关系.
如图,在四边形abcd中,ac平分∠bad,∠adc+∠abc=180°,ce⊥ab于e.猜想ad、ae、ab间的数量关
如图,四边形ABCD中,∠ABC+∠D=180°,AC平分∠BAD,CE⊥AB,CF⊥AD.试说明:AB+AD=2AF
如图,在四边形ABCD中,∠B+∠D=180°,AC平分∠,BAD,CE⊥AB于点E你认为AB+AD=2AE吗?说明理由
已知:如图,四边形ABCD中,AC平分角BAD,CE垂直AB 于E,且AE=½(AD+AB),求证∠B+∠D=
如图,在凸四边形ABCD中,AC平分∠BAD,过点C作CE⊥AB于点E,并且AE=二分之一(AB+AD)
如图,在四边形ABCD中,AC平分∠BAD,CE⊥AB于点E,且∠B+∠D=180°.求证:AE=AD+BE.