已知A(-2,0)、B(2,0),点C、点D满足|AC|=2,向量AD=1/2(向量AB+向量AC)
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/13 09:10:40
已知A(-2,0)、B(2,0),点C、点D满足|AC|=2,向量AD=1/2(向量AB+向量AC)
(1)求点D的轨迹方程
(2)过点A作直线l交以A、B为焦点的椭圆于M、N两点,线段MN的中点到y轴的距离为4/5,且直线l与点D的轨迹相切,求该椭圆的方程
.特别是第二题...好难吖.
(1)求点D的轨迹方程
(2)过点A作直线l交以A、B为焦点的椭圆于M、N两点,线段MN的中点到y轴的距离为4/5,且直线l与点D的轨迹相切,求该椭圆的方程
.特别是第二题...好难吖.
设C(xc,yc),D(x,y),则
向量AB=(4,0),向量AC=(xc+2,yc),向量AD=(x+2,y)
∵|AC|=2
∴C的轨迹方程为:
(xc+2)²+yc²=4(1)
∵向量AD=1/2(向量AB+向量AC)
∴代数表达为:
x+2=1/2(xc+2+4)
y=1/2yc
整理,得:
xc=2x-2(2)
yc=2y(3)
将(2)、(3)代入(1),得:
4x²+4y²=4
x²+y²=1
答:D的轨迹方程为x²+y²=1.
显然:过点A(-2,0)且与x轴垂直的直线不可能与D的轨迹相切,
不符合题意
∴直线l的斜率必然存在
设l:y=k(x+2),即kx-y+2k=0
∵直线l与D的轨迹相切
∴D的轨迹的圆心O(0,0)到直线l的距离为半径r=1
代入点到直线的距离公式,有:
|2k|/(k²+1)^0.5=1
解得:k=±√3/3
经画图、分析可知:图像关于x轴对称
∴k=√3/3与k=-√3/3等价
∴不妨设k=√3/3
则l:y=√3/3(x+2)
设椭圆的方程为:x²/a²+y²/b²=1
∵A(-2,0),B(2,0)为焦点
∴a²-b²=4
设M(x1,y1),N(x2,y2)
将椭圆方程与直线方程联立,得:
x²/a²+(x+2)²/(3b²)=1
3b²x²+a²x²+4a²x+4a²=3a²b²
(a²+3b²)x²+4a²x+4a²-3a²b²=0
根据韦达定理,有:
x1+x2=-2a²/(a²+3b²)
∵M(x1,y1),N(x2,y2)在直线l:y=√3/3(x+2)上
∴y1=√3/3(x1+2),y2=√3/3(x2+2)
∴y1+y2=√3/3(x1+x2+4)=√3/3[-2a²/(a²+3b²)+4]
设MN中点为E(xe,ye),则
根据题意,有:ye=4/5
∵E为MN中点
∴ye=1/2(y1+y2)=√3/3[-a²/(a²+3b²)+2]=4/5
又∵a²-b²=4
∴解得:a²=(1845+60√3)/457,b²=(17+60√3)/457
答:椭圆的方程为457x²/(1845+60√3)+457y²/(17+60√3)=1.
向量AB=(4,0),向量AC=(xc+2,yc),向量AD=(x+2,y)
∵|AC|=2
∴C的轨迹方程为:
(xc+2)²+yc²=4(1)
∵向量AD=1/2(向量AB+向量AC)
∴代数表达为:
x+2=1/2(xc+2+4)
y=1/2yc
整理,得:
xc=2x-2(2)
yc=2y(3)
将(2)、(3)代入(1),得:
4x²+4y²=4
x²+y²=1
答:D的轨迹方程为x²+y²=1.
显然:过点A(-2,0)且与x轴垂直的直线不可能与D的轨迹相切,
不符合题意
∴直线l的斜率必然存在
设l:y=k(x+2),即kx-y+2k=0
∵直线l与D的轨迹相切
∴D的轨迹的圆心O(0,0)到直线l的距离为半径r=1
代入点到直线的距离公式,有:
|2k|/(k²+1)^0.5=1
解得:k=±√3/3
经画图、分析可知:图像关于x轴对称
∴k=√3/3与k=-√3/3等价
∴不妨设k=√3/3
则l:y=√3/3(x+2)
设椭圆的方程为:x²/a²+y²/b²=1
∵A(-2,0),B(2,0)为焦点
∴a²-b²=4
设M(x1,y1),N(x2,y2)
将椭圆方程与直线方程联立,得:
x²/a²+(x+2)²/(3b²)=1
3b²x²+a²x²+4a²x+4a²=3a²b²
(a²+3b²)x²+4a²x+4a²-3a²b²=0
根据韦达定理,有:
x1+x2=-2a²/(a²+3b²)
∵M(x1,y1),N(x2,y2)在直线l:y=√3/3(x+2)上
∴y1=√3/3(x1+2),y2=√3/3(x2+2)
∴y1+y2=√3/3(x1+x2+4)=√3/3[-2a²/(a²+3b²)+4]
设MN中点为E(xe,ye),则
根据题意,有:ye=4/5
∵E为MN中点
∴ye=1/2(y1+y2)=√3/3[-a²/(a²+3b²)+2]=4/5
又∵a²-b²=4
∴解得:a²=(1845+60√3)/457,b²=(17+60√3)/457
答:椭圆的方程为457x²/(1845+60√3)+457y²/(17+60√3)=1.
已知平面上四个互异的A、B、C、D满足(向量AB-向量AC)点×2(向量AD-向量BD-向量CD)=0,则()
已知平面上4个互异的点A,B,C,D满足:(向量AB-向量AC)乘以(2向量AD-向量BD-向量CD)=0,则三角形AB
已知点A(1,1),B(-1,5)及向量AC=1/2向量AB,向量AD=2向量AB,向量AE=-1/2向量AB,求点C、
已知平面上四个互异的点A、B、C、D满足:(向量AB-向量AC)*(2向量AD-向量BD-向量CD)=0,则△ABC的形
已知点A(1,-1),B(3,0),C(2,1).若平面区域D有所有满足向量AP=λ向量AB+μ向量AC(1≤λ≤2,0
已知A(-1,0),B(1,0)两点,C点在直线2x-3=0上,且向量AC*向量AB,向量CA*向量BC,向量BA*向量
已知A(2,3),B(-1,5),向量AC=1/3向量AB,向量AD=3向量AB,向量AE=-1/4向量AB求C、D、E
已知O,A,B是平面上三个点,直线AB上有一个点C,满足向量2AC+向量CB=0,则向量OC=
在三角形ABC中,向量AB=向量C,向量AC=向量B.若点D满足BD=2DC,则AD=?
急:已知点A(1,-2),B(2,1),C(3,2),D(-2,3),以向量AB,向量AC为一组基底表示向量AD+向量B
O是平面上一点,A,B,C是平面上不共线三点,动点P满足向量OP=向量OA+λ((向量AB+向量AC),λ∈[0,1/2
已知点A(-1,2)B(2,8)及向量AC=三分之一向量AB,向量DA=负三分之一向量BA,求C,D和向量CD的坐标》