已知圆o:x^2+y^2=4和点(1,a),若a=√2,过点M的圆的两条弦AC,BD互相垂直,求AC+BD的最大值
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/15 11:27:01
已知圆o:x^2+y^2=4和点(1,a),若a=√2,过点M的圆的两条弦AC,BD互相垂直,求AC+BD的最大值
如图,作OE⊥AC、OF⊥BD,分别连接OB、OM、OC.
则:OE²=OC²-CE², OF²=ME²=OM²-OE²=OM²-(OC²-CE²)=OM²+CE²-OC²,
BF²=OB²-OF²=OB²-(OM²+CE²-OC²)=OB²+OC²-OM²-CE²=2(OB)²-OM²-CE².
由题意知:OB=2、 OM=√3 ,故:BF=√(5-CE²).
则:AC+BD=2CE+2BF=2(CE+BF)=2[CE+√(5-CE²)]
由不等式x+y≤√[2(x²+y²)]得:CE+√(5-CE²)≤√[2(CE²+5-CE²)=√10.
所以:AC+BD≤2√10,即AC+BD的最大值为2√10.
则:OE²=OC²-CE², OF²=ME²=OM²-OE²=OM²-(OC²-CE²)=OM²+CE²-OC²,
BF²=OB²-OF²=OB²-(OM²+CE²-OC²)=OB²+OC²-OM²-CE²=2(OB)²-OM²-CE².
由题意知:OB=2、 OM=√3 ,故:BF=√(5-CE²).
则:AC+BD=2CE+2BF=2(CE+BF)=2[CE+√(5-CE²)]
由不等式x+y≤√[2(x²+y²)]得:CE+√(5-CE²)≤√[2(CE²+5-CE²)=√10.
所以:AC+BD≤2√10,即AC+BD的最大值为2√10.
= =|||已知AC,BD为圆O:x²+y²=4的两条互相垂直的弦,AC,BD交于点M(1,√2),
已知圆的方程为x^2+y^2-6x-8y=0,设该圆过点(3,5)的弦ac和bd,且ac垂直bd,则四边形abcd的面积
圆的计算题目已知AC.BD为园O:X^2+Y^2=4的两条相互垂直的弦,垂足为点M(1,√2),则四边行ABCD面积的最
已知F是椭圆X^/2+Y^2=1的左焦点,两弦AC与BD均过点F.若AC垂直于BD,试求四边形ABCD的面积S的最小值
已知圆的方程为x^2+y^2-6x-8y=0 设该圆过点(3,5)的两条弦分别为AC和BD,且 AC⊥BD,则四边形AB
如图,已知点A.B在双曲线y=k/x(x>0)上,AC垂直x轴于点C,BD垂直y轴于点D,AC与BD交于点p,p是AC的
已知平行四边形ABCD中,对角线AC和BD相交于点O,AC=10,若AC垂直于BD,试求四边形ABCD的面积
如图,已知ac,bd是圆o的两条互相垂直的弦,并且ac,bd相交于点r,op垂直bc,oq垂直ad.
已知圆T:(x-4)2+(y-3)2=25,过圆T内定点P(2,1)作两条相互垂直的弦AC和BD,那么四边形ABCD面积
已知半径为2的圆的圆心在坐标原点,两条互相垂直的弦AC和BD相交于点M(1,根号2),求ABCD的面积的最大最小值!
抛物线y=-(根号3)/3(x^2-2x-3)的图像交坐标轴于点A、B、C,过点C、O的⊙O'交AC于点D 连BD交⊙O
四边形ABCD中,线段AC和BD互相垂直且相交于O.已知AC=4厘米,BD=5厘米,求四边形ABCD的面积.