作业帮 > 数学 > 作业

如图,在Rt△ABC中,∠ABC=90°,点O为AC中点,点E为线段BC上一点,∠EOF=90°,OF交AB于点F,试给

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/13 00:32:08
如图,在Rt△ABC中,∠ABC=90°,点O为AC中点,点E为线段BC上一点,∠EOF=90°,OF交AB于点F,试给出线段AF、FE、EC之间的数量关系并证明.
如图,在Rt△ABC中,∠ABC=90°,点O为AC中点,点E为线段BC上一点,∠EOF=90°,OF交AB于点F,试给
证明:
延长FO到M,使FO=OM,连接CM,EM,
∵点O是AC的中点,
∴OA=OC,
在△AOF和△COM中,

AO=OC
∠AOF=∠MOC
FO=OM,
∴△AOF≌△COM(SAS),
∴AF=CM,∠A=∠MCO,
∴AB∥CM,
∵∠B=90°,
∴∠MCE=90°,
∵∠EOF=90°,OF=OM,
∴EF=EM,
在Rt△MCE中,由勾股定理得:ME2=CM2+CE2
∵EF=EM,CM=AF,
∴AF2+CE2=EF2