作业帮 > 数学 > 作业

等腰梯形ABCD中,AB‖CD,对角线AC.BD相交于点O,角ACD=60°,点S,P,Q分别是OD,OA,BC的中点,

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/13 14:16:18
等腰梯形ABCD中,AB‖CD,对角线AC.BD相交于点O,角ACD=60°,点S,P,Q分别是OD,OA,BC的中点,
(1)求证:△PQS是等边三角形(不用说了)
(2)若S△PQS:S△AOD=4:5,求CD:AB的值
等腰梯形ABCD中,AB‖CD,对角线AC.BD相交于点O,角ACD=60°,点S,P,Q分别是OD,OA,BC的中点,
(1)找到OC中点R,连SR,RQ
RS = OS
RQ = 1/2 * OB = 1/2*OA = OP
SOP = 120
SRQ = ORS + ORQ = 60 + 60 = 120
=>
SOP与SRQ全等
=》
SP=SQ
PSQ = PSO + OSQ
= OSQ + SRQ
= OSR = 60
证毕
(2)
S(PSQ) = 1/2 * PS*PS*sin60
S(AOD) = 1/2 * DO*AO*sin120
=>
4/5 = PS*PS / DO*AO
= AD*AD / 4AB*CD
已知:
AD*AD = AB*AB + CD*CD - 2AC*CDcos120
= AB*AB + CD*CD + AB*CD
=>
AB*AB + CD*CD - 11/5 * AB*CD = 0
=>
AB:CD = (11±√21)/10