作业帮 > 数学 > 作业

在正方形ABCD的边AB上任取一点E,作EF⊥AB交BD于点F,取FD的中点G,连接EG、CG,在正方形ABCD的边AB

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 00:11:13
在正方形ABCD的边AB上任取一点E,作EF⊥AB交BD于点F,取FD的中点G,连接EG、CG,在正方形ABCD的边AB上任取
在正方形ABCD的边AB上任取一点E,作EF⊥AB交BD于点F,取FD中点G,连接EG、CG.
(1)证明EG⊥CG且EG⊥CG
(2)将△BEF绕点B逆时针旋转90°,则线段EG和CG有怎样的数量关系和位置关系?请写出你的猜想并证明(3)将△BEF绕点B逆时针旋转180°,则线段EG和CG又有怎样的数量关系和位置关系?请写出你的猜想,并加以证明
在正方形ABCD的边AB上任取一点E,作EF⊥AB交BD于点F,取FD的中点G,连接EG、CG,在正方形ABCD的边AB
(1)
被延G到P 连接PD PC EC 延长EB PD交与H,PH与BC交与O
易证△EFG≌PDG
易证△FEB为等直三角形
EF=PD=EB
易证EF∥PD
则EH⊥EF⊥PD
角H=角DCO=90
易证△BHO∽OCD
∠HBO=CDO
∠EBC=CDP(外角)
∵PD=EF=EB
∠EBC=PDC
BC=CD
△EBC≌PDC
易证∠PCE=90
易证△ECP为等直三角形
G为EP中点
则EGC为等直三角形
则EG⊥CG且=CG
(2)EG=CG,EG⊥CG. (2分)
证明:延长FE交DC延长线于M,连MG.
∵∠AEM=90°,∠EBC=90°,∠BCM=90°,
∴四边形BEMC是矩形.
∴BE=CM,∠EMC=90°,
△BEF为等腰直角三角形,∴BE=EF,
∴EF=CM.
∵∠EMC=90°,FG=DG,
∴MG=1 2 FD=FG.
∵BC=EM,BC=CD,
∴EM=CD.
∵EF=CM,
∴FM=DM,
∴∠F=45°.
又FG=DG,
∠CMG=1 2 ∠EMC=45°,
∴∠F=∠GMC.
∴△GFE≌△GMC.
∴EG=CG,∠FGE=∠MGC. (2分)
∵∠FMC=90°,MF=MD,FG=DG,
∴MG⊥FD,
∴∠FGE+∠EGM=90°,
∴∠MGC+∠EGM=90°,
即∠EGC=90°,
∴EG⊥CG. (2分)