f(x)在[-1,1]连续,证明 ∫∫f(x+y)dxdy=∫[-1,1]f(t)dt,D:|x|+|y|≤1.
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 09:56:06
f(x)在[-1,1]连续,证明 ∫∫f(x+y)dxdy=∫[-1,1]f(t)dt,D:|x|+|y|≤1.
以y轴分为界线,将区域为分两部分,左边为D1,右边为D2
当积分区域为D1时:
∫∫f(x+y)dxdy
=∫[-1---->0] dx ∫[-1-x---->1+x] f(x+y)dy
对内层积分换元
令x+y=t,则dy=dt,t:-1--->2x+1
=∫[-1---->0] dx ∫[-1---->2x+1] f(t)dt
交换积分次序:
=∫[-1---->1] dt ∫[(t-1)/2---->0] f(t) dx
=(1/2)∫[-1---->1] (1-t)f(t) dt
当积分区域为D2时:
∫∫f(x+y)dxdy
=∫[0---->1] dx ∫[x-1---->1-x] f(x+y)dy
对内层积分换元
令x+y=t,则dy=dt,t:2x-1--->1
=∫[0---->1] dx ∫[2x-1---->1] f(t)dt
交换积分次序:
=∫[-1---->1] dt ∫[0---->(t+1)/2] f(t) dx
=(1/2)∫[-1---->1] (t+1)f(t) dt
综上:左边=(1/2)∫[-1---->1] (1-t)f(t) dt+(1/2)∫[-1---->1] (t+1)f(t) dt
=∫[-1---->1] f(t) dt=右边
当积分区域为D1时:
∫∫f(x+y)dxdy
=∫[-1---->0] dx ∫[-1-x---->1+x] f(x+y)dy
对内层积分换元
令x+y=t,则dy=dt,t:-1--->2x+1
=∫[-1---->0] dx ∫[-1---->2x+1] f(t)dt
交换积分次序:
=∫[-1---->1] dt ∫[(t-1)/2---->0] f(t) dx
=(1/2)∫[-1---->1] (1-t)f(t) dt
当积分区域为D2时:
∫∫f(x+y)dxdy
=∫[0---->1] dx ∫[x-1---->1-x] f(x+y)dy
对内层积分换元
令x+y=t,则dy=dt,t:2x-1--->1
=∫[0---->1] dx ∫[2x-1---->1] f(t)dt
交换积分次序:
=∫[-1---->1] dt ∫[0---->(t+1)/2] f(t) dx
=(1/2)∫[-1---->1] (t+1)f(t) dt
综上:左边=(1/2)∫[-1---->1] (1-t)f(t) dt+(1/2)∫[-1---->1] (t+1)f(t) dt
=∫[-1---->1] f(t) dt=右边
设函数f(x)在区间[0,1]上有连续导数,f(0)=1,且满足 ∫ ∫ Dt f'(x+y)dxdy= ∫ ∫ Dt
证明:设f(x)在(-∞,+∞)连续,则函数F(x)=∫(0,1)f(x+t)dt可导,并求F'(x)
设f(x)在区间【0,1】上有连续导数,证明x∈【0,1】,有|f(x)|≤∫(|f(t)|+|f′(t)|)dt
函数f(x)>0在[a,b]上连续,令F(x)=∫(0到x)f(t)dt+∫(0到x)1/f(t)dt,证明方程F(x)
f(x)连续且f(x)=x+(x^2)∫ (0,1)f(t)dt,求f(x)
如果f(x)在[0,1]上连续,证明:∫[0->1][∫[0->x]f(t)dt]dx=∫[0->1](1-x)f(x)
f(x)在[a,b]上连续,在(a,b) 内可导,且 f '(x)≤0,F(x)=1/(x-a)∫(x-a)f(t)dt
设函数f(x)在区间[0,1]上连续,证明∫[∫f(t)dt]dx=∫(1-x)f(x)dx
设f(x)在(-无穷,+无穷)内连续,证明(d/dx)∫(0~x)(x-t)f'(t)dt=f(x)-f(a)
f(x)在[a,b]上连续可导,f'(x)≤0 若F(x)=1/x-a,定积分∫f(t)dt[a,x] 证明在(a,b)
@问几个高数题,1设函数f(x)连续,f(0)不等于0.求lim{[∫(x-t)f(t)dt]}/{[x∫f(x-t)d
若f(x) 连续,∫[0,1]xf(t)dt=f(x)+xe^x,求f(x)