求I=∫∫(x+1)dydz+ydzdx+dxdy平面x=0y=0z=0 x+y+z=1围成空间区域边界曲面外侧
计算曲面积分∫∫x^3dydz+y^3dzdx+z^3dxdy,其中积分区域为,x^2+y^2+z^2=1的外侧.
若∑是由平面x+y+z=1及三个坐标面围成的立体表面外侧,则曲面积分∫∫∫(x+1)dydz+ydzdx+dxdy=
∫∫(x+2y+z)dxdy+yzdydz 其中 Σ为平面x+2y+z=6与坐标面所围成区域的边界曲面的外侧
曲面积分 ∫∫(y^2-x)dydz+(z^2-y)dzdx+(x^2-z)dxdy,∑为Z=1-x^2-y^2位于侧面
计算曲面积分I=∫∫2x^3dydz+2y^3dzdx+3(z^2-1)dxdy,积分区域为∑,∑是曲面z=1-x^2-
曲面为锥面z=根号(x^2+y^2)与z=1所围立体的表面外侧,则∫∫xdydz+ydzdx+zdxdy=
封闭∫∫(xz+1)dxdy+(xy+1)dydz+(yz+1)dzdx其中∑是平面x=0 y=0 z=0 以及x+y+
设∑是由旋转抛物面z=x^2+y^2,平面z=0及平面z=1所围成的区域,求三重积分∫∫∫(x^2+y^2+z)dxdy
∫∫xdydz+ydzdx+(z^2-2z)dxdy 其中∑为锥面 z=根号x^2+y^2 被平面z=0 和z=1所截得
计算∫∫2xz^2dydz+y(z^2+1)dzdx+(2-z^3)dxdy,其中∑是曲面z=x
计算第二型曲面积分∫∫xdydz+ydzdx+zdxdy,其中S是曲面|x|+|y|+|z|=1的外侧.
计算曲面积分 I=∫∫(S+) (x^3)dydz+(z)dzdx+(y)dxdy 其中s+为曲面x^2+y^2=4,与