∫(0,9)x^2√(a^2-x^2)dx
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/13 12:47:10
∫(0,9)x^2√(a^2-x^2)dx
求定积分
∫(0,a) x^2√(a^2-x^2)dx 是(0,a)
求定积分
∫(0,a) x^2√(a^2-x^2)dx 是(0,a)
你的题目估计写错了,积分区间应该是(0,a),或将a^2改成9;这是很简单的问题,直接利用三角换元法:
令x=asint (-π/2<t<π/2),则√(a^2-x^2) = acost,dx = acost dt
当 x = 0 ,t = 0 ;当 x = a ,t = π/2
∫(0,a) x^2√(a^2-x^2)dx
=∫(0,π/2) (asint)^2·acost·acost dt
=a^4·∫(0,π/2) (sint)^2·(cost)^2 dt
=a^4/4·∫(0,π/2) (sin2t)^2 dt
=a^4/8·∫(0,π/2) (1 - cos4t) dt
=a^4/8·(t - 1/4 sin4t)|(0,π/2)
=π·a^4/16
令x=asint (-π/2<t<π/2),则√(a^2-x^2) = acost,dx = acost dt
当 x = 0 ,t = 0 ;当 x = a ,t = π/2
∫(0,a) x^2√(a^2-x^2)dx
=∫(0,π/2) (asint)^2·acost·acost dt
=a^4·∫(0,π/2) (sint)^2·(cost)^2 dt
=a^4/4·∫(0,π/2) (sin2t)^2 dt
=a^4/8·∫(0,π/2) (1 - cos4t) dt
=a^4/8·(t - 1/4 sin4t)|(0,π/2)
=π·a^4/16
∫(0,a)dx/(x+√(a^2-x^2))dx
∫(0,∏/2)dx/(x+√(a^2-x^2))dx
x/√(x^2+a^2)dx
∫x^3*√(a^2-x^2)dx (a>0,为常数) ∫x^2/√(9-x^2)dx
1.∫dx/(√a²+x²) 2.∫x²e^(-2x)dx
不定积分 :∫ x^2/√a^2-x^2 dx
∫1/x√(a^2-x^2)dx
∫x√(1+2x)dx
∫x^3/9+X^2 dx.
∫x^3/(9+x^2)dx
∫dx/x(a+bx)及∫dx/x(a+bx)^2及∫dx/x(a+bx^2)?
下列无穷积分收敛的是 A ∫sinx dx B ∫e^-2x dx C ∫1/x dx D∫1/√x dx