一道初三几何证明题,有难度.
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/16 20:08:26
一道初三几何证明题,有难度.
已知角ABC=60°,以线段AB为底边在线段AB的右侧作底角为A的等腰三角形ABE,点P为射线BC上任意一点【点P与B不重合】,以AP为底边在线段AP的右侧作底角为A的等腰三角形APQ,连结QE并延长交BC于F.
当角A为大于0度,小于60度时,猜想角QFC为几度.
已知角ABC=60°,以线段AB为底边在线段AB的右侧作底角为A的等腰三角形ABE,点P为射线BC上任意一点【点P与B不重合】,以AP为底边在线段AP的右侧作底角为A的等腰三角形APQ,连结QE并延长交BC于F.
当角A为大于0度,小于60度时,猜想角QFC为几度.
利用三角相等 可知 △ABE ∽ △APQ
所以有 AQ/AE=AP/AB
所以 AQ/AP=AE/AB (1)
又 ∠BAE=∠PAQ ∠BAE +∠PAE =∠PAQ +∠PAE 即 ∠BAP=∠EAQ (2)
在 △ABP与△AEQ 中 应用 两边夹一角定理 [见 (1)、(2)式子],
可知 △ABP ∽ △AEQ
因此有 ∠ABP=∠AEQ=60
∠QFC=∠FBE+∠BEF
∠FBE=60-∠A
∠BEF=180-60-∠AEB=120-(180-2∠A)=2∠A-60
∠QFC=∠FBE+∠BEF=60-∠A+2∠A-60=∠A
因此 ∠QFC的度数应该与∠A 相等
所以有 AQ/AE=AP/AB
所以 AQ/AP=AE/AB (1)
又 ∠BAE=∠PAQ ∠BAE +∠PAE =∠PAQ +∠PAE 即 ∠BAP=∠EAQ (2)
在 △ABP与△AEQ 中 应用 两边夹一角定理 [见 (1)、(2)式子],
可知 △ABP ∽ △AEQ
因此有 ∠ABP=∠AEQ=60
∠QFC=∠FBE+∠BEF
∠FBE=60-∠A
∠BEF=180-60-∠AEB=120-(180-2∠A)=2∠A-60
∠QFC=∠FBE+∠BEF=60-∠A+2∠A-60=∠A
因此 ∠QFC的度数应该与∠A 相等