作业帮 > 数学 > 作业

求由方程x-y+1/2 sin⁡y=0所确定的函数的二阶导数(d^2 y)/(dx^2 )

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/07 02:30:18
求由方程x-y+1/2 sin⁡y=0所确定的函数的二阶导数(d^2 y)/(dx^2 )
求由方程x-y+1/2 sin⁡y=0所确定的函数的二阶导数(d^2 y)/(dx^2 )
这是个隐函数求导问题,y是x的函数.
方程两边对x求导,得:
1 - y' + 1/2 cos(y) * y' = 0 (1)
进一步得到
y' (1/2 cos(y) - 1) + 1 = 0
y' = 1/ (1-1/2 cos(y)) (2)
再在(1)对x求导,得到:
- y'' + 1/2 cos(y) * y'' + y' (-1/2 sin(y)*y') = 0
(-1 + 1/2 cos(y)) y'' + y' (-1/2 sin(y)*y') = 0
y'' = 1/2 sin(y)*(y')^2 / (-1 + 1/2 cos(y))
将上面(2)的y'代入,即得到最后的y'',即(d^2 y)/(dx^2 ) .