作业帮 > 综合 > 作业

已知:A在平面BDC外,AB=AC=BC=AD=CD=DB,E为AD中点.求:CE与平面BCD所成角.

来源:学生作业帮 编辑:神马作文网作业帮 分类:综合作业 时间:2024/11/13 22:47:36
已知:A在平面BDC外,AB=AC=BC=AD=CD=DB,E为AD中点.求:CE与平面BCD所成角.
已知:A在平面BDC外,AB=AC=BC=AD=CD=DB,E为AD中点.求:CE与平面BCD所成角.
设F为BC的中点,G为E在平面BCD上的垂足.
sin∠EFD=(1/2)/(√3/2)=1/√3.
cos∠EFD=√(2/3).
EF=FD×cos∠EFD=(√3/2)×√(2/3)=1/√2.
FG=FE×cos∠EFD=(1/√2)×√(2/3)=1/√3.
CG²=CF²+FG²=(1/2)²+(1/√3)²=7/12.
CG=√(7/12).
cos∠ECG=CG/CE=√(7/12)/(√3/2)=√7/3.
∠ECG=arccos(√7/3).
这就是CE与平面BCD所成的角