如图,计划把河水引到水池A中,先作AB⊥CD,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是______
如图,计划在河边建一水厂,可过C点引CD⊥AB于D,在D点建水厂,可使水厂到村庄C的路程最短,这种设计的依据是_____
如图,AB是⊙O的直径CD是弦,若AB=10cm,CD=8cm,那么A、B两点到直线CD的距离之和为______.
如图,AB是⊙o的直径,CD是弦,过A,B两点作CD的垂线,垂足分别为E,F,若AB=10,AE=3,BF=5,则EC=
如图:AB是的直径,CD是弦,过A、B两点作CD的垂线,垂足分别为E、F,若AB=10,AE=3,BF=5,求EC的长.
圆 垂径定理已知AB是圆O的直径,CD是弦,AB=20,CD=16,过A、B向CD引垂线,垂足分别为E、F如图,弦CD与
如图,在圆O中,AB,CD是两条相等的弦,且AB⊥CD,垂足为点P,过圆心O分别向AB,CD作垂线OE,OF
如图,⊙O的弦AB垂直于CD,E为垂足,AE=3,BE=7,且AB=CD,则圆心O到CD的距离是______.
如图,AB是⊙O的直径,CD为弦,分别过A、B两点作直线CD的垂线,垂足分别为E、F.求证:EC=DF.
如图,AB为半圆直径,C、D是AB上异于A、B的任意两点,引EC⊥AB交半圆于E,连结DE,作CF⊥DE,垂足为F,CF
如图,有ab两个容器,先把a容器装满水,然后倒入b容器中,容器中水的深度是多少厘米?
如图,已知AB、CD是⊙O的弦,AB⊥CD,垂足为点E,AB被CD分成3厘米、14厘米两段(AE<EB),求点O到CD的
如图,已知AB,CD是圆O的弦,AB⊥CD,垂足为点E,AB被CD分成3CM,14CM(AE小于EB),求点O到CD的距