作业帮 > 数学 > 作业

怎么判断级数1/(3n)是收敛的?

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/13 23:22:57
怎么判断级数1/(3n)是收敛的?
我刚开始学级数..感觉我判断的完全不对..
级数1/(3n)的Sn=(1/3)*(1+(1/2)+...+(1/n))
我觉得乘号后面的那一串当n无穷大的时候是趋于2的嘛..为什么是发散的呢?
还有能教下我判断一个级数的收敛性的步骤么?最好是能具体找个例子分析给我看看...
失误失误..这个数列是发散的..
我知道调和级数可以证明..我想知道我的想法为什么是错的..还有判断级数的收敛性的步骤..
怎么判断级数1/(3n)是收敛的?
判断一个级数的收敛性
第一步,如果可以直接求出其前n项和得表达式sn,就求出sn,然后求其在n趋于无穷时的极限,若极限时一个常数则级数收敛,不是的话就是发散
第二步,如果求不出sn,且其一般项an>0,则应用正项级数的比较判别法,比值判别法,根号判别法来进行判断
第三步,如果是一个任意项级数,则当其绝对收敛时必条件收敛,为交错级数时,当其一般项an满足an≥an+1,且lim an=0(n趋于∞)时,交错级数收敛
对任何级数,当其一般项an在n趋于无穷时不趋于0的情况下,必发散