1到1999组成的多位数,如1234567891101112131415.19981998
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/14 08:55:59
1到1999组成的多位数,如1234567891101112131415.19981998
试求这个多位数被9除,余几?
帮别人提问的,务求详细和理由,只要回答得权威,分数我有的是
19981998为19981999
试求这个多位数被9除,余几?
帮别人提问的,务求详细和理由,只要回答得权威,分数我有的是
19981998为19981999
【答案】可以被9整除 余数 是1
【解析】既然是小学生的题,应该从小学的角度去考虑,应该引导小学生发现规律
观察九九乘法表不难发现
1×9= 9 (0+9 = 9)
2×9=18 (1+8 =9 )
3×9=27 (2+7= 9)
4×9=36 (3+6= 9)
5×9=45 (4+5= 9)
6×9=54 (5+4= 9)
7×9=63 (6+3= 9)
8×9=72 (7+2= 9)
9×9=81 (8+1= 9)
在这个9的乘法口诀中:答案里 个位上的数字和十位上的数字相加都是9,也就是说一个数字各个位数加起来的和能被9整除的,这个数就可以被9整除,随便举个例子3573就可以被9整除(大家也可以随便试)
123456789这个数字个个位数加起来刚好=45,可以被9整除
所以现在问题转化成只要我们知道:
123456789101112131415.19981999这个数字的各个位数加起来能被9整除就可以了
假设算上2000在这一组数字里面刚好有200组1234567890这样的数字,刚好可以被9整除,但是加了一个数字,所以到1999就正好余数是1
呼,终于写完了,不知道能够看懂
通过小学的九九乘法表的规律解答的.
这个小学级别的题也太难了……
不明白的话可以继续追问哦,绝对一帮到底O(∩_∩)O
【解析】既然是小学生的题,应该从小学的角度去考虑,应该引导小学生发现规律
观察九九乘法表不难发现
1×9= 9 (0+9 = 9)
2×9=18 (1+8 =9 )
3×9=27 (2+7= 9)
4×9=36 (3+6= 9)
5×9=45 (4+5= 9)
6×9=54 (5+4= 9)
7×9=63 (6+3= 9)
8×9=72 (7+2= 9)
9×9=81 (8+1= 9)
在这个9的乘法口诀中:答案里 个位上的数字和十位上的数字相加都是9,也就是说一个数字各个位数加起来的和能被9整除的,这个数就可以被9整除,随便举个例子3573就可以被9整除(大家也可以随便试)
123456789这个数字个个位数加起来刚好=45,可以被9整除
所以现在问题转化成只要我们知道:
123456789101112131415.19981999这个数字的各个位数加起来能被9整除就可以了
假设算上2000在这一组数字里面刚好有200组1234567890这样的数字,刚好可以被9整除,但是加了一个数字,所以到1999就正好余数是1
呼,终于写完了,不知道能够看懂
通过小学的九九乘法表的规律解答的.
这个小学级别的题也太难了……
不明白的话可以继续追问哦,绝对一帮到底O(∩_∩)O
用1到8这8个数字组成一道3位数乘1位数的乘法算式积是4位数,并且数字不能重复
1到9,组成不含重复数字的3位数,有多少个能被3整除?
从1到8组成两个四位数 是他们的和相加得10000
1到9 组成4位数乘法 不能重复
0到9十个数字组成可重复的四位数至8位数 老大
从1到6的六个数字中取两个偶数和两个奇数组成没有重复数字的四位数可组成几个不同四位数;四位数中两个...
数学高难度题用1到8八个数字其中三个组成的三位数乘以其中一个组成的个位数得另外四个组成的四位数.
从1写到100组成一个多位数:123456789101112..99100,如果从中画掉100个数字,使其剩下的数尽可能
如果把1到999这些自然数按照从小到大的顺序排成一排,这样就组成了一个多位数:12345678910111213…996
将1到999这些自然数按照从小到大的顺序排成一排组成了一个多位数:123456789101112..999,那么从左往右
有1到9共9个数组成两个四位数和一个一位数,且这两个四位数的商等于这个一位数,这三个数是多少
用1、2、3、4、5这5个数字(数字可重复,如“522”)组成3位数,这个3位数是奇数的概率为( )