如图,正方形ABCD的对角线BD上取BE=BC,连接CE,P为CE上任一点,PQ⊥BC,PR⊥BE,求证PQ+PR=二分
如图,正方形ABCD的对角线BD上去BE=BC,连接CE,P为CE上任一点,PQ⊥BC,PR⊥BE,求证:PQ+PR=&
如图,E为边长为1的正方形ABCD的对角线BD上一点,且BE=BC,P为CE上任意一点,PQ⊥BC,PR⊥BE,则PQ+
正方形ABCD的对角线BC上取BE=BC,联结CE,P为CE任一点,PQ⊥BC,PR⊥BE,求PQ+PQ=1/2BD
如图,E是边长为1的正方形ABCD的对角线BD上一点,且BE=BC,P为CE上任意一点,PQ⊥BC于点Q,PR⊥BE于点
如图,E是边长为1的正方形ABCD的对角线BD上一点,且BE=BC,P为CE上任意一点,PQ⊥BC于点Q,PR⊥BE于点
如图,正方形ABCD的边长是4,点E在BD上,BE=BC,P是CE上任意一点,PQ⊥BC于Q,PR⊥BE于R,则PQ+P
E是边长为1的正方形ABCD的对角线BD上一点且BE=BC,P为CE上一点,PQ垂直BC于点Q,PR垂直BE于点R
E是边长为1的正方形ABCD对角线BD上一点,且BE=BC,P为CE上任意一点,PQ垂直BC于点Q,PR垂直BD于点R,
点E是正方形ABCD对角线BD上的点,BE=BC且BD=1,P是CE上任意一点,PQ垂直BC于点R,则PR+PQ的值是多
1,E是边长为2的正方形ABCD的对角线BD上一点,且BE=BC,P为CE上任意一点,PQ垂直于BC于点Q,PR垂直于B
在正方形ABCD中,在对角线BD上截取BE=BC,连接CE,P为CE上的一点,PQ⊥BC于Q,RP⊥BE于R,若AC=a
已知正方形ABCD,E是BD上一点,且BE=BC,又P点在EC上,PR垂直BE,PQ垂直BC,求PR+PQ=?.