∫(π到0)x乘以根号下((cosx)^2-(cosx)^4)dx
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/19 07:01:12
∫(π到0)x乘以根号下((cosx)^2-(cosx)^4)dx
∫[π,0] x√(cosx^2-cosx^4)dx
=∫[π,π/2] -xcosxsinxdx+∫[π/2,0] xcosxsinxdx
=(1/2)∫[π,π/2]xdcos2x+(-1/2)∫[π/2,0]xdcos2x
=(1/2)xcos2x|[π,π/2]-(1/4)sin2x|[π,π/2] +(-1/2)xcos2x|[π/2,0]+(1/4)sin2x|[π/2,0]
= -3π/4+(-1/2)(π/2)
=-π
再问: 最后答案好像是π/2啊。。。
再答: ∫[π,0] x√(cosx^2-cosx^4)dx =(1/4)∫[π,π/2]xdcos2x+(-1/4)∫[π/2,0]xdcos2x =(1/4)xcos2x|[π,π/2]-(1/8)sin2x|[π,π/2] +(-1/4)xcos2x|[π/2,0]+(1/8)sin2x|[π/2,0] = -3π/8+(-1/4)(π/2) =-π/2 ∫[0,π] x√(cosx^2-cosx^4)dx =(-1/4)∫[π,π/2]xdcos2x+(1/4)∫[π/2,0]xdcos2x =(-1/4)xcos2x|[π,π/2]+(1/8)sin2x|[π,π/2] +(1/4)xcos2x|[π/2,0]-(1/8)sin2x|[π/2,0] = 3π/8+(1/4)(π/2) =π/2
=∫[π,π/2] -xcosxsinxdx+∫[π/2,0] xcosxsinxdx
=(1/2)∫[π,π/2]xdcos2x+(-1/2)∫[π/2,0]xdcos2x
=(1/2)xcos2x|[π,π/2]-(1/4)sin2x|[π,π/2] +(-1/2)xcos2x|[π/2,0]+(1/4)sin2x|[π/2,0]
= -3π/4+(-1/2)(π/2)
=-π
再问: 最后答案好像是π/2啊。。。
再答: ∫[π,0] x√(cosx^2-cosx^4)dx =(1/4)∫[π,π/2]xdcos2x+(-1/4)∫[π/2,0]xdcos2x =(1/4)xcos2x|[π,π/2]-(1/8)sin2x|[π,π/2] +(-1/4)xcos2x|[π/2,0]+(1/8)sin2x|[π/2,0] = -3π/8+(-1/4)(π/2) =-π/2 ∫[0,π] x√(cosx^2-cosx^4)dx =(-1/4)∫[π,π/2]xdcos2x+(1/4)∫[π/2,0]xdcos2x =(-1/4)xcos2x|[π,π/2]+(1/8)sin2x|[π,π/2] +(1/4)xcos2x|[π/2,0]-(1/8)sin2x|[π/2,0] = 3π/8+(1/4)(π/2) =π/2
∫(π到0)根号下((cosx)^2-(cosx)^4)dx
∫(2x-1)除以根号x dx ∫cosx dx +∫-2(sinx)^2 乘以cosx dx+∫(sinx)^4乘以c
∫(下0,上π/4) x/(cosx)^2 dx
∫(sinx+cosx)/三次根号下sinx-cosx dx
求定积分x在0到π/2上 1/(cosx+sinx)dx 答案是根号2乘以ln(根号2+1)
哪个是广义积分 (1/sinx - 1/x)dx 0到pai/2 (cosx/根号下x) dx 0到pai/2
∫(0,3 π)根号下1-cosx dx=
根号下(1-cosx)/(1+cosx)乘以(根号下(1+sinx)+根号下(1-sinx) ),x∈﹙π/2,π)的值
微分方程题:分离变量,(1/2)(dx/dy)=根号下(y+1)乘以cosX,
∫下0上pi (sinx)^3*(cosx)^6 dx ∫下1上4 xln(根号x) dx
设f(x)-(cosx)^2=∫(下0上π/4)f(2x)dx,求∫(下0上π/2)f(x)dx.
两道定积分的题1.f 3π到0 ( 根号下 1-cosx ) dx 的值2函数y=f X到0 (sint+costsin