作业帮 > 数学 > 作业

∫(π到0)x乘以根号下((cosx)^2-(cosx)^4)dx

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/19 07:01:12
∫(π到0)x乘以根号下((cosx)^2-(cosx)^4)dx
∫(π到0)x乘以根号下((cosx)^2-(cosx)^4)dx
∫[π,0] x√(cosx^2-cosx^4)dx
=∫[π,π/2] -xcosxsinxdx+∫[π/2,0] xcosxsinxdx
=(1/2)∫[π,π/2]xdcos2x+(-1/2)∫[π/2,0]xdcos2x
=(1/2)xcos2x|[π,π/2]-(1/4)sin2x|[π,π/2] +(-1/2)xcos2x|[π/2,0]+(1/4)sin2x|[π/2,0]
= -3π/4+(-1/2)(π/2)
=-π
再问: 最后答案好像是π/2啊。。。
再答: ∫[π,0] x√(cosx^2-cosx^4)dx =(1/4)∫[π,π/2]xdcos2x+(-1/4)∫[π/2,0]xdcos2x =(1/4)xcos2x|[π,π/2]-(1/8)sin2x|[π,π/2] +(-1/4)xcos2x|[π/2,0]+(1/8)sin2x|[π/2,0] = -3π/8+(-1/4)(π/2) =-π/2 ∫[0,π] x√(cosx^2-cosx^4)dx =(-1/4)∫[π,π/2]xdcos2x+(1/4)∫[π/2,0]xdcos2x =(-1/4)xcos2x|[π,π/2]+(1/8)sin2x|[π,π/2] +(1/4)xcos2x|[π/2,0]-(1/8)sin2x|[π/2,0] = 3π/8+(1/4)(π/2) =π/2