若点M是△ABC所在平面内一点,且满足5AM的向量=AB的向量=3AC的向量,则△ABM与△ABC的面积之比为( )
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/19 14:08:09
若点M是△ABC所在平面内一点,且满足5AM的向量=AB的向量=3AC的向量,则△ABM与△ABC的面积之比为( )
A.1/5 B.2/5 C.3/5 D.4/5
A.1/5 B.2/5 C.3/5 D.4/5
向量AM=(1/5)AB+(3/5)AC=(1/5)(AC+CB)+(3/5)AC
=(4/5)AC+(1/5)CB,
∴向量CM=CA+AM=(1/5)CA+(1/5)CB,
延长CM交AB于E,设CE=yCA+(1-y)CB,则
y=(1-y),y=1/2.
∴CM=(2/5)CE,ME=(3/5)CE,
△ABM与△ABC的面积之比=ME/CE=3/5,选C.
=(4/5)AC+(1/5)CB,
∴向量CM=CA+AM=(1/5)CA+(1/5)CB,
延长CM交AB于E,设CE=yCA+(1-y)CB,则
y=(1-y),y=1/2.
∴CM=(2/5)CE,ME=(3/5)CE,
△ABM与△ABC的面积之比=ME/CE=3/5,选C.
已知P为△ABC所在平面内一点,且满足向量AP=1/5向量AC+2/5向量AB,且△APB的面积与△PAC的面积之比为.
若O为△ABC所在平面内的一点,动点P满足向量OP=向量OA+入(向量AB+向量AC),……
设P为三角形ABC所在平面内一点,且向量AP=1/5向量AB+2/5向量AC,则三角形ABP与三角形ABC的面积之比是多
设P为三角形ABC所在平面内一点,且向量AP=2/3向量AB+1/3向量AC,则三角形ABP与三角形ABC的面积之比是多
点P是三角形ABC所在平面内的一点,且满足向量AP=1/3AB+2/3AC,则三角形PAC的面积与三角形ABC的面积之比
点p是三角形ABC所在平面内的一点,且满足向量AP=1/3AB﹢2/3AC,则三角形PAC面积与三角形ABC面积之比
G为△ABC所在平面内一点且满足向量GA+向量GB+向量GC=0向量,求证G为△ABC的重心.
O为三角形ABC所在的平面内一点,且满足向量OA+2向量OB+3向量OC=0,则三角形AOC与三角形BOC的面积之比为2
若O是三角形ABC所在平面内一点,且满足|向量OB-向量OC|=|向量OB+向量OC-2向量OA|,则三角形ABC的形状
已知点O为△ABC所在平面内一点,若向量OA+向量OB+向量OC=0,则点O是△ABC的
已知o为三角形ABC所在平面内一点且满足向量oa+2向量ob+3向量oc=零向量,则三角形AOB与三角形AOC的面积比
在△ABC所在的平面内有一点P,如果2倍向量PA+向量PC=向量AB-向量PB,那么△PBC的面积与△ABC的面积之比是