F(x)=x2+2bx+c,b,c属于R.若F(x)等于0,且关于x的方程F(x)+x+b=0的两个实数根分别在(-3,
设f(x)=x^2+bx+c(b,c属于实数),若x的绝对值大于等于2时,f(x)大于等于0,且f(x)在区间(2,3]
已知二次函数f(x)=x²+2bx+c(b,c∈R)满足f(1)=0,且关于x的方程f(x)+x+b的两个
设f(x)=x^2+bx+c(b,c属于R),若|x|≥2时f(x)≥0,且f(x)在区间(2,3]上的最大值为1,求b
已知二次函f(x)=ax^2+bx+1(a>0,b属于r),设方程f(x)=x有两个实数根x1,x2.
已知二次函f(x)=ax^2+bx+1(a>0,a,b属于r),设方程f(x)=x有两个实数根x1,x2.
设f(x)=x^2+bx+c(b,c属于R),若|x|≥2时f(x)≥0,且f(x)在区间(2,3]上的最大值为1,
已知二次函数f(x)=x^2+2bx+c,且f(1)=0,设g(x)=f(x)+x+b,若方程g(x)=0的两个实根分别
已知f(x)=ax^2+bx+c(a,b,c属于R,且a不等于0),证明方程f(x)=0有两个不相等的实数解的充要条件是
设二次函数f(x)=ax^2+bx+c(a>0),方程f(x)-x=0的两个根分别为x1,x2,且满足0
已知二次函数f(x)=ax^2+bx+1(a,b属于R,a>0),设方程f(x)=x的两个实数根为X1和X2 1)如果X
已知实数a,b,c属于R,函数f(x)=ax^3+bx^2+cx满足f(1)=0,设f(x)的导函数为f’(x),满足f
设f(x)=x^+bx+c (b c为常数),方程f(x)=x的两实数根为x1 x2 且满足 x1>0 x2-x1>1