作业帮 > 数学 > 作业

已知三角形ABC中,AC=1.角ABC=2兀/3,角BAC=x, 记f(x)=向量AB*向量BC (1)求函数f(x)的

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 04:39:04
已知三角形ABC中,AC=1.角ABC=2兀/3,角BAC=x, 记f(x)=向量AB*向量BC (1)求函数f(x)的解析式及定义域
已知三角形ABC中,AC=1.角ABC=2兀/3,角BAC=x, 记f(x)=向量AB*向量BC (1)求函数f(x)的
f(x)=向量AB×向量BC
=AB×BC×cos∠ABC
=AB×BC×cos(2π/3)
=AB×BC×-1/2
BC/sinx=AC/sin∠ABC(正弦定理)
BC=(sinx×AC)/sin∠ABC=2√3sinx/3
因为∠ACB=π-2π/3-x=π/3-x
同理AB/sin(π/3-x)=AC/sin∠ABC
AB=(sin(π/3-x)×AC)/sin∠ABC
=2√3sin(π/3-x)/3
将AB,BC代入
得f(x)=2√3sinx/3×2√3sin(π/3-x)/3×-1/2
=(-sinx×sin(π/3-x))/3
定义域为(0,π/3)