这2题.
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 03:17:39
这2题.
连结EC
∵正方形A'B'CD'是由正方形ABCD旋转得到
∴CB' = CD = 1,∠B' = ∠D = 90°
∵EC = EC
∴Rt△EB'C ≌ Rt△EDC
∴∠B'CE = ∠DCE,EB'=ED
∵∠B'CB = 30°
∴∠B'CE = ∠DCE = ∠B'CD/2 = 30°
∴ED =CD/√3 = √3/3
∴AE = AD - ED = 1-√3/3 = (3-√3)/3
2)延长CF,BA交于H
∵F是AD的中点,HB//CD
∴HA = CD
∵CD = AB
∴A是HB的中点
∵E是CD的中点
∴EC = FD
∵BC = CD,∠BCE = ∠D
∴△BCE≌△FDC
∴∠FCD = ∠EBC
∵∠EBC + ∠BEC = 90°
∴∠FCD + ∠BEC = 90°
∴BP⊥HP
∴△HBP是Rt△
∴∵AP是斜边上的中线
∴AP = BA
∵正方形A'B'CD'是由正方形ABCD旋转得到
∴CB' = CD = 1,∠B' = ∠D = 90°
∵EC = EC
∴Rt△EB'C ≌ Rt△EDC
∴∠B'CE = ∠DCE,EB'=ED
∵∠B'CB = 30°
∴∠B'CE = ∠DCE = ∠B'CD/2 = 30°
∴ED =CD/√3 = √3/3
∴AE = AD - ED = 1-√3/3 = (3-√3)/3
2)延长CF,BA交于H
∵F是AD的中点,HB//CD
∴HA = CD
∵CD = AB
∴A是HB的中点
∵E是CD的中点
∴EC = FD
∵BC = CD,∠BCE = ∠D
∴△BCE≌△FDC
∴∠FCD = ∠EBC
∵∠EBC + ∠BEC = 90°
∴∠FCD + ∠BEC = 90°
∴BP⊥HP
∴△HBP是Rt△
∴∵AP是斜边上的中线
∴AP = BA