作业帮 > 数学 > 作业

已知f(x)=(2x²+ax-2a)/2x在[1,+∞)上是单调递增函数,求a的取值范围

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 11:01:19
已知f(x)=(2x²+ax-2a)/2x在[1,+∞)上是单调递增函数,求a的取值范围
已知f(x)=(2x²+ax-2a)/2x在[1,+∞)上是单调递增函数,求a的取值范围
f(x)=(2x²+ax-2a)/(2x)
=x-a/x+a/2
f'(x)=1+a/x²
若f(x)在[1,+∞)上是单调递增函数
则x≥1,f'(x)≥0
即1+a/x≥0,a≥-x恒成立
组a大于等于-x的最大值
∵-x≤-1
∴a≥-1