作业帮 > 数学 > 作业

换元法求:∫1/(2(sin x)^2+3(cos x)^2) dx

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 01:38:09
换元法求:∫1/(2(sin x)^2+3(cos x)^2) dx
换元法求:∫1/(2(sin x)^2+3(cos x)^2) dx
设t=tanx,则dt=d(tanx)
∴原式=∫dx/(2sin²x+3cos²x)
=∫dx/[cos²x(2sin²x/cos²x+3)]
=∫sec²xdx/(2sin²x/cos²x+3)
=∫d(tanx)/(2tan²x+3)
=∫dt/(2t²+3)
=1/3∫dt/(2t²/3+1)
=1/√6∫d(√(2/3)t)/[(√(2/3)t)²+1]
=1/√6arctan[√(2/3)tanx]+C (C是积分常数)