在平面直角坐标系xOy中,点A(0,3),直线l:y=2x-4.设圆C的半径为1,圆心在l上.
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 07:03:29
在平面直角坐标系xOy中,点A(0,3),直线l:y=2x-4.设圆C的半径为1,圆心在l上.
(1)若圆心C也在直线y=x-1上,过点A作圆C的切线,求切线的方程;
(2)若圆C上存在点M,使MA=2MO,求圆心C的横坐标a的取值范围.
(1)若圆心C也在直线y=x-1上,过点A作圆C的切线,求切线的方程;
(2)若圆C上存在点M,使MA=2MO,求圆心C的横坐标a的取值范围.
1、
圆心在y=2x-4上,也在y=x-1上
所以,2x-4=x-1
所以,x=3,y=2
即,圆心(3,2),半径为1
设切线的斜率为k,则切线方程为:y-3=kx,即kx-y+3=0
圆心到切线的距离等于圆的半径,即d=|3k-2+3|/√(k^2+1)=1
===> |3k+1|=√(k^2+1)
===> 9k^2+6k+1=k^2+1
===> 8k^2+6k=0
===> k=0,或者k=-3/4
所以,切线方程为:y=3;或者3x+4y-12=0
2、
已知圆心在y=2x-4上,设横坐标为x=a,则纵坐标为y=2a-4
即,圆心(a,2a-4)
那么圆方程为(x-a)^2+[y-(2a-4)]^2=1
令M(a+cosθ,(2a-4)+sinθ)
已知A(0,3);O(0,0),且MA=2MO
所以,MA^2=(a+cosθ)^2+[(2a-7)+sinθ]^2
=a^2+2acosθ+cos^2 θ+(4a^2-28a+49)+2(2a-7)sinθ+sin^2 θ
=5a^2-28a+50+2acosθ+2(2a-7)sinθ
MO^2=(a+cosθ)^2+[(2a-4)+sinθ]^2
=a^2+2acosθ+cos^2 θ+(4a^2-16a+16)+2(2a-4)sinθ+sin^2 θ
=5a^2-16a+17+2acosθ+2(2a-4)sinθ
所以:
5a^2-28a+50+2acosθ+2(2a-7)sinθ=20a^2-64a+68+8acosθ+8(2a-4)sinθ
===> 15a^2-36a+18+6acosθ+(12a-18)sinθ=0
===> 5a^2-12a+6+2acosθ+(4a-6)sinθ=0
===> 5a^2-(12-2cosθ-4sinθ)a+6-6sinθ=0
圆心在y=2x-4上,也在y=x-1上
所以,2x-4=x-1
所以,x=3,y=2
即,圆心(3,2),半径为1
设切线的斜率为k,则切线方程为:y-3=kx,即kx-y+3=0
圆心到切线的距离等于圆的半径,即d=|3k-2+3|/√(k^2+1)=1
===> |3k+1|=√(k^2+1)
===> 9k^2+6k+1=k^2+1
===> 8k^2+6k=0
===> k=0,或者k=-3/4
所以,切线方程为:y=3;或者3x+4y-12=0
2、
已知圆心在y=2x-4上,设横坐标为x=a,则纵坐标为y=2a-4
即,圆心(a,2a-4)
那么圆方程为(x-a)^2+[y-(2a-4)]^2=1
令M(a+cosθ,(2a-4)+sinθ)
已知A(0,3);O(0,0),且MA=2MO
所以,MA^2=(a+cosθ)^2+[(2a-7)+sinθ]^2
=a^2+2acosθ+cos^2 θ+(4a^2-28a+49)+2(2a-7)sinθ+sin^2 θ
=5a^2-28a+50+2acosθ+2(2a-7)sinθ
MO^2=(a+cosθ)^2+[(2a-4)+sinθ]^2
=a^2+2acosθ+cos^2 θ+(4a^2-16a+16)+2(2a-4)sinθ+sin^2 θ
=5a^2-16a+17+2acosθ+2(2a-4)sinθ
所以:
5a^2-28a+50+2acosθ+2(2a-7)sinθ=20a^2-64a+68+8acosθ+8(2a-4)sinθ
===> 15a^2-36a+18+6acosθ+(12a-18)sinθ=0
===> 5a^2-12a+6+2acosθ+(4a-6)sinθ=0
===> 5a^2-(12-2cosθ-4sinθ)a+6-6sinθ=0
如图,在平面直角坐标系中,已知点A(0,3),直线l:y=2x-4,设圆C的半径为1,圆心在直线l上.江苏高考17题
在平面直角坐标系中,已知点A(0,3),直线l:y=2x-4,圆C的圆心在直线l上,且半径为1
在平面直角坐标系xoy中,已知圆心在直线y=x+4上,半径为22的圆C经过坐标原点O.
在平面直角坐标系xOy中,已知点A(0,2),直线l:x+y-4=0,点B(x,y)是圆C:x2+y2-2x-1=0上的
在平面直角坐标系xOy中,已知点A(-2,0),园C:X^2+y^2=1,过点A作斜率为K的直线L与圆C交于两个不同的点
在平面直角坐标系XOY中,已知圆心在直线y=x+4上,半径为二倍根号二的圆C经过原点O.
在平面直角坐标系xOy中,已知圆心在x轴上、半径为2的圆C位于y轴右侧,且与直线x−3y+2=0相切.
在平面直角坐标系xoy中,已知圆C:(x+3)2+(y-1)2=4,直线L过点A(4,0),且被圆C截得弦为2根号3,求
在平面直角坐标系XOY中,圆C的参数方程为x=4cosβ ,y=4sinβ,直线l经过点P(2,2),倾斜角为a=π/3
在平面直角坐标系xOy中,已知圆心在x轴上 、半径为2的圆C位于y轴右侧,且与直线x-
在平面直角坐标系xOy中,以C(1,-2)为圆心的圆与直线x+y+32+1=0相切.
在平面直角坐标系xOy中,直线上l:ax+by+c=0与圆x^2+y^2=4交于A,B两点.