求∫cosx/sin^2xdx; ∫sec5xdx; ∫1/(√x+3√x)dx; ∫[√﹙x-1﹚/x]dx; ∫si
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 13:11:55
求∫cosx/sin^2xdx; ∫sec5xdx; ∫1/(√x+3√x)dx; ∫[√﹙x-1﹚/x]dx; ∫sin√xdx;
1、∫cosxdx/sin²x=∫cscxcotxdx=-cscx + c
2、∫sec5xdx=(1/5)∫sec5xd(5x)=(1/5)ln|sec5x+tan5x| + c
3、∫dx/[x^(1/2)+x^(1/3)],u=x^1/6,x=u^6,dx=6u^5du
= 6∫u^5du/(u³+u²)
= 6∫u³du/(u+1)
= 6∫[u²-u-1/(u+1)+1]du
= 6[u³-u²-ln|u+1|+u] + c
= 2x^(1/2)-3x^(1/3)+6x^(1/6)-6ln|1+x^(1/6)| + c
4、∫√(x-1)dx / x,u=√(x-1),du=dx/[2√(x-1)]
= 2∫u²du/(1+u²)
= 2∫[1-1/(1+u²)]du
= 2(u-arctanu) + c
= 2√(x-1) - 2arctan√(x-1) + c
5、∫sin√xdx
= ∫ (2√x)sin√xdx / (2√x)
= 2∫√xsin√xd√x
= -2∫√xdcos√x
= - 2√xcos√x + 2∫cos√xd√x
= 2sin(√x) - 2(√x)cos(√x) + c
2、∫sec5xdx=(1/5)∫sec5xd(5x)=(1/5)ln|sec5x+tan5x| + c
3、∫dx/[x^(1/2)+x^(1/3)],u=x^1/6,x=u^6,dx=6u^5du
= 6∫u^5du/(u³+u²)
= 6∫u³du/(u+1)
= 6∫[u²-u-1/(u+1)+1]du
= 6[u³-u²-ln|u+1|+u] + c
= 2x^(1/2)-3x^(1/3)+6x^(1/6)-6ln|1+x^(1/6)| + c
4、∫√(x-1)dx / x,u=√(x-1),du=dx/[2√(x-1)]
= 2∫u²du/(1+u²)
= 2∫[1-1/(1+u²)]du
= 2(u-arctanu) + c
= 2√(x-1) - 2arctan√(x-1) + c
5、∫sin√xdx
= ∫ (2√x)sin√xdx / (2√x)
= 2∫√xsin√xd√x
= -2∫√xdcos√x
= - 2√xcos√x + 2∫cos√xd√x
= 2sin(√x) - 2(√x)cos(√x) + c
∫sin 2\3 xdx,∫e^sinx cosxdx,∫1\x^2 sin 1\x dx求不定积分
求不定积分1.∫x√x dx 2.∫x^2√x dx 3.∫dx/x^2 4.∫6x^3dx √x dx 表示根号xdx
求不定积分∫sin(2x)/(1+cosx)dx
求∫√(sin^3x-sin^5x)dx
求几个微积分解答 ∫(2x+1)³dx ,∫(x+1)/√xdx,∫㏑²x/xdx
∫sin^3 x cosx dx
∫sinx/(cosx-sin^2x)dx
∫(x^1/3+3)^2dx ∫(2x-1)^2xdx 求不定积分,
∫(3x+1)/[(√4+x²)] dx ∫sin√x dx
∫ (x+cosx)/(1+sin²x) dx
求高手帮做下不定积分 ∫㏑㏑x/xdx ∫dx/x²√(x²-1) ∫dx/(a²-x&s
已知复合函数f(e^x)=e^x+x 求不定积分∫f(x)dx 求不定积分∫√(x-1)^3/xdx