如图,椭圆x^2/a^2+y^2/b^2=1(a>b>0)的左右焦点分别是F1、F2,M、N是椭圆右准线上的两个动点,且
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/20 20:14:39
如图,椭圆x^2/a^2+y^2/b^2=1(a>b>0)的左右焦点分别是F1、F2,M、N是椭圆右准线上的两个动点,且向量F1M*向量F2N=0
(1)向量OM*向量ON为定值(2)设椭圆离心率为1/2,MN的最小值为2根号15,求椭圆方程
(1)向量OM*向量ON为定值(2)设椭圆离心率为1/2,MN的最小值为2根号15,求椭圆方程
刚好我正在做圆锥曲线……
(1)证明:设M座标为(a^2/c,y1) N座标为(a^2/c,y^2),又向量F1M*向量F2N=0即F1M垂直于F2N,则有y1/(a^2/c+c)・y2/(a^2/c-c)=-1,即 y1・y2=(c^4-a^4)/c^2 (①式) 根据余弦定理有CosMON=(MO2+NO2-MN2)/(2MO*NO) 所以向量OM*向量ON=MO*NO*CosMON=(MO2+NO2-MN2)/2 将①式代入得向量OM*向量ON=[y1^2+a^4/c^2+y2^2+a^4/c^2-(y^1-y^2)^2]/2=[2a^4/c^2+(2c^4-2a^4)/c^2]/2=c^2
根据题意有y1-y2大於等於2倍根号15,又根据①式并代入离心率有y1・y2=-15a^2/4 (②),因为y1大於0,-y2大於0,根据均值不等式并代入②式有y1-y2=y1+(-y2)大於等於2倍根号(y1・y2)=a*根号15,故a*根号15=2倍根号15,解得a=2,c=1,b=根号3,则有椭圆方程为 x2/4+y2/3=1
答:(2)x^2/4+y^2/3=1
打得手都软了 记得给我加分哦!
(1)证明:设M座标为(a^2/c,y1) N座标为(a^2/c,y^2),又向量F1M*向量F2N=0即F1M垂直于F2N,则有y1/(a^2/c+c)・y2/(a^2/c-c)=-1,即 y1・y2=(c^4-a^4)/c^2 (①式) 根据余弦定理有CosMON=(MO2+NO2-MN2)/(2MO*NO) 所以向量OM*向量ON=MO*NO*CosMON=(MO2+NO2-MN2)/2 将①式代入得向量OM*向量ON=[y1^2+a^4/c^2+y2^2+a^4/c^2-(y^1-y^2)^2]/2=[2a^4/c^2+(2c^4-2a^4)/c^2]/2=c^2
根据题意有y1-y2大於等於2倍根号15,又根据①式并代入离心率有y1・y2=-15a^2/4 (②),因为y1大於0,-y2大於0,根据均值不等式并代入②式有y1-y2=y1+(-y2)大於等於2倍根号(y1・y2)=a*根号15,故a*根号15=2倍根号15,解得a=2,c=1,b=根号3,则有椭圆方程为 x2/4+y2/3=1
答:(2)x^2/4+y^2/3=1
打得手都软了 记得给我加分哦!
设F1 F2分别是椭圆x^2/a^2+y^2/b^2=1(a>b>0)的左右焦点,若在其右准线上存在点P,使PF1的中垂
已知F1,F2分别是椭圆C:x^2/a^2+y^2/b^2=1(a>0,b>0)的左,右焦点,点M是椭圆上一点,且∠F1
设F1,F2分别是椭圆(x^2)/(a^2)+(y^2)/(b^2)=1的左右焦点,若在其右准线上存在点P,使PF1的中
设F1,F2分别是椭圆X^2/a+Y^2/b^2=1(a》b》0)的左、右焦点,若在其右准线上存在P,使线段PF1的中垂
如图,已知椭圆x^2/a^2+y^2/b^2=1(a>b>0),F1,F2分别是椭圆的左右焦点,A为椭圆上顶点,
已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)的左右焦点为F1,F2,l为右准线...
椭圆x的平方除a的平方+y的平方除b的平方=1(a>b>0 ),F1,F2是左右焦点,l是右准线,若椭圆上存在点P,使/
已知椭圆x^2/a^2+y^2/b^2=1(a>b>0),F1,F2分别是椭圆的左右焦点,如果在椭圆上存在一点M(x,y
如图,F1,F2是椭圆x^2/a^2+y^2/b^2=1的左右焦点,点M在x轴上,且向量OM=√3/2向量OF2,过点F
已知椭圆x2/2+y2=1,椭圆左右焦点为F1,F2,A,B是椭圆上的两个不同的点,A B分别交与x轴的上下方 满足F1
F1,F2分别是椭圆x*2/a*2+y*2/b*2=1(a>b>0)的左右焦点,椭圆上的点到F2的最近距离为4,最远距离
如图,F1,F2是椭圆x^2/a^2+y^2/b^2=1的左右焦点,点M在x轴上,且向量OM=√3/2向量OF2,