如图,在等边△ABC中,AB=4,点D是AB中点,过D作射线DE、DF使角EDF=60°,射线DF与AC边交与点F(点F
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 05:01:15
如图,在等边△ABC中,AB=4,点D是AB中点,过D作射线DE、DF使角EDF=60°,射线DF与AC边交与点F(点F不与点A重合),射线DE与BC的延长线交于点E.
1.求证△BDE∽△AFD
2.求证△ADF∽△DEF
3.设CF=x,EF=y,求y关于x的函数解析式,并写出它的定义域.
1.求证△BDE∽△AFD
2.求证△ADF∽△DEF
3.设CF=x,EF=y,求y关于x的函数解析式,并写出它的定义域.
3,
易证△ADF与△DEF相似
可得EF/FD=FD/AF FD^2=AE*AF
由 AF=4-X 故 FD^2=Y(4-X)
在三角形AFD中用余弦定理:
DF^2=AD^2+AF^2-2AD*AFcos∠A
=4+(4-x)^2-2*2(4-x)cos60°,
=x^2-6x+12.
∴ Y=(X^2-6X+12) / (4-X)
定义域 4>x>3
E、C不重合 故X不小于3;
F、A不重合 故x不大于4.
易证△ADF与△DEF相似
可得EF/FD=FD/AF FD^2=AE*AF
由 AF=4-X 故 FD^2=Y(4-X)
在三角形AFD中用余弦定理:
DF^2=AD^2+AF^2-2AD*AFcos∠A
=4+(4-x)^2-2*2(4-x)cos60°,
=x^2-6x+12.
∴ Y=(X^2-6X+12) / (4-X)
定义域 4>x>3
E、C不重合 故X不小于3;
F、A不重合 故x不大于4.
如图,在等边三角形ABC中,AB=4,点D是AB的中点,过D点作射线DE、DF,使角EDF=60°射线DF与AC交边于点
如图,在等边三角形ABC中,AB=4,点D是AB的中点,过点D作射线DE、DF,使∠EDF=60°,射线DF与AC边交于
在等边三角形ABC中AB=4,D是AB的中点,过D作射线DE、DF,使角EDF=60度,射线DF与AC边于F射线DE与B
如图,在等腰直角三角形ABC中,∠ABC=90°,点D是AC边上的中点,过点 D作DE⊥DF,交AB于点E,交BC于点F
如图,△ABC中,DE∥BC,交边AB、AC分别与点D、E,过点B作射线BF交DE延长线与点F,有DE=EF.
如图,在△ABC中,∠A的平分线与BC的中垂线交于点D,过点D作DE⊥AB于点E,DF⊥AC的延长线于点F.试说明BE=
如图,在等腰三角形ABC中,∠ABC=90°,D为AC边上的中点,过D点作DE垂直DF,交AB于点E,交BC于点F
如图,在等腰三角形ABC中,∠ABC=90°,D为AC边上的中点,过D点作DE垂直DF,交AB于点E,交BC于点F,
如图,在等腰三角形ABC中,∠ABC=90°,D为AC边上的中点,过D点作DE垂直DF,交AB于点E,交BC于点F,若A
如图在△abc中,D是边BC上的一点,DE⊥AB于点E,DF⊥AC于点F,且DE=DF,EF与AD交于点O,求证AD⊥E
如图在三角形ABC中,D是BC的中点,过D点的直线GF交与AC于F,交AC的平行线BG于G点,DE垂直于DF交AB于点E
如图,在等腰直角三角形ABC中,∠ABC=90°,D为AC边上中点,过D点作DE⊥DF,交AB于E,交BC于F,若AB=