以三角形ABC的AB、AC为边向外做等边三角形ABD、ACE,连接CD、BE相交于点O.求证:OA平分角DOE.
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/10 20:53:36
以三角形ABC的AB、AC为边向外做等边三角形ABD、ACE,连接CD、BE相交于点O.求证:OA平分角DOE.
仅举两例:
证法1:
因为△ABD、△ACE为等边三角形
所以 AD=AB,AC=AE,角DAB=角CAE=60度,角DAB+角BAC=角CAE+角BAC
所以 角DAC=角BAE,所以 三角形DAC全等于三角形BAE,
所以 角ABO=角ADO,角AEO=角ACO
所以 B,O,A,D四点共圆,C,O,A,E四点共圆
所以 角AOD=角ABD=60°,角AOE=角ACE=60°
所以 角AOD=角AOE=60°,所以 OA平分∠DOE
证法2:
因为△ABD、△ACE为等边三角形
所以 AD=AB,AC=AE,角DAB=角CAE=60度,角DAB+角BAC=角CAE+角BAC
所以 角DAC=角BAE,所以 三角形DAC全等于三角形BAE,
所以 DC=BE 且三角形DAC和三角形BAE的面积相等;
过A分别作DC、BE边上的高AF,AG,则高AF=AG相等,Rt△AOF全等于Rt△AOG,角AOD=角AOE,于是AO平分角DOE
证法1:
因为△ABD、△ACE为等边三角形
所以 AD=AB,AC=AE,角DAB=角CAE=60度,角DAB+角BAC=角CAE+角BAC
所以 角DAC=角BAE,所以 三角形DAC全等于三角形BAE,
所以 角ABO=角ADO,角AEO=角ACO
所以 B,O,A,D四点共圆,C,O,A,E四点共圆
所以 角AOD=角ABD=60°,角AOE=角ACE=60°
所以 角AOD=角AOE=60°,所以 OA平分∠DOE
证法2:
因为△ABD、△ACE为等边三角形
所以 AD=AB,AC=AE,角DAB=角CAE=60度,角DAB+角BAC=角CAE+角BAC
所以 角DAC=角BAE,所以 三角形DAC全等于三角形BAE,
所以 DC=BE 且三角形DAC和三角形BAE的面积相等;
过A分别作DC、BE边上的高AF,AG,则高AF=AG相等,Rt△AOF全等于Rt△AOG,角AOD=角AOE,于是AO平分角DOE
以三角形ABC的边AB,AC为边向外做等边三角形ABD和等边三角形ACE,连BE,CD交于O,求证OA平分角DOE
如图:以三角形ABC的两边AB,AC分别向外作等边三角形ABD,三角形ACE,连结BE,CD并相交于O点,求证AO平分角
自己画图饿 以三角形ABC的边AB,AC为边长 向外作等边三角形ABD和ACE,CD与BE交于点O.求证AO平分角DOE
如图,以三角形ABC的两边AB、AC分别向外作等边三角形ABD、等边三角形ACE、连接BE、CD,并相交于O点.求证:A
如图,分别以△ABC的边AB,AC向外作等边三角形ABD和等边三角形ACE,线段BE与CD相交于点O,连接OA.
已知:如图所示,以已知三角形ABC的两边AB、AC为边向外做等边三角形三角形ABD和三角形ACE,DC、BE相交于点O
如图,分别以三角形ABC的边,AC向外作等边三角形ABD和等边三角形ACE,线段BE与CD相交于点O.(1)求证:B
如图,分别以已知三角形abc的两边ab,ac为边向外作等边三角形abd和等边三角形ace,dc与be相交于点o.
(2)如图,分别以△ABC的边AB,AC为边向外作等边三角形ABD和等边三角形ACE,CD与BE相交于点D,
分别以△abc的边ab,ac为直角边向外作等腰RT△abd,rt△ace,连接be,cd,且交于0.求证:oa平分∠do
如图,在△ABC中,以AB、AC为边向外做等边三角形△ACE和等边三角形△ABD,连接CD、BE
以三角形ABC的AB和AC两边为边,做等腰直角三角形ABD和ACE,求证BE=CD,BE垂直于CD