作业帮 > 数学 > 作业

设n阶矩阵A的伴随矩阵为A*,证明:若|A|=0,则|A*|=0.(请给予详细的证明过程)

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/20 02:18:48
设n阶矩阵A的伴随矩阵为A*,证明:若|A|=0,则|A*|=0.(请给予详细的证明过程)
设n阶矩阵A的伴随矩阵为A*,证明:若|A|=0,则|A*|=0.(请给予详细的证明过程)
可以用反证法
假设|A|=0的时候|A*|!=0 (“不等于”用“!=”代替)
那么A*可逆 (A*可逆的充要条件是|A*|!=0)
所以 A=(A A*)(A*^-1)
=(|A|I)(A^-1),(I为单位矩阵,A^-1为A的逆,AA*=A*A=|A|I)
=|A|((A*)^-1)=O
因此A=O 故而退出A*=O 但与A*可逆矛盾,所以|A*|=0