设函数f(x)=ax2 +bx+c (a不等于0) 对于任意实数,都有f(2+t)=f(2-t)成立,则f(-1).f(
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/13 21:12:28
设函数f(x)=ax2 +bx+c (a不等于0) 对于任意实数,都有f(2+t)=f(2-t)成立,则f(-1).f(1) f(2)的大小如何
谁会?
我要具体的过程,
谁会?
我要具体的过程,
f(2+t)=f(2-t)成立 则说明f(x)关于x=2对称,则x=2为f(x)的对称轴
讨论a的正负.
若a〉0,则f(x)开口向上,f(2)取最小值,-1与1 在对称轴的左侧,递减,且-1与2的距离大于1与2的距离,则f(-1)〉f(1)〉f(2)
若a〈0,则f(x)开口向下,f(2)取最大值,-1与1 在对称轴的左侧,递增,且-1与2的距离大于1与2的距离,则f(-1)〈f(1)〈f(2)
讨论a的正负.
若a〉0,则f(x)开口向上,f(2)取最小值,-1与1 在对称轴的左侧,递减,且-1与2的距离大于1与2的距离,则f(-1)〉f(1)〉f(2)
若a〈0,则f(x)开口向下,f(2)取最大值,-1与1 在对称轴的左侧,递增,且-1与2的距离大于1与2的距离,则f(-1)〈f(1)〈f(2)
设函数f(x)=ax2 +bx+c (a不等于0) 对于任意实数,都有f(2+t)=f(2-t)成立,
设函数f(x)=ax2+bx+c(a≠0),对任意实数t都有f(2+t)=f(2-t)成立,那么在函数值f(-1)、f(
设二次函数f(x)等于ax2+bx+c (a不为0),对任意实数t都有f(2+t)等于(2-t)成立,则函数值中f(-1
设函数f(x)=a^2+bx+c(a≠0),对任意实数t都有f(2+t)=f(2-t)成立,则函数值f(-1),f(1)
设函数f(x)=(x+a)^2对于任意实数t∈R都有f(1-t)=f(1+t),则a的值是?
函数函数:f(x)=(x+a)3对于任意实数t 都有f(1+t)=-f(1-t),求f(2)+f(-2)=?
函数f(x)=-x^2+bx+c对任意实数都有f(2+t)=f(2-t)
如果函数f(x)=ax²+bx+c(a>0)对任意实数t都有f(2+t)=f(2-t),那么
二次函数f(x)=ax2+bx+c “对于任意实数x都有f(x)大于等于0的”
设二次函数f(x)=ax2+bx+c满足f(1)=1,f(-1)=0,对于任意的实数x都有f(x)-x≥0,*(1)证明
已知函数f(x)=ax2+bx+c,f(0)=0,对于任意实数x恒有f(1-x)=f(1+x)成立,方程f(x)=x有两
如果函数f(x)=x2+bx+c对任意实数t都有f(2+t)=f(2-t),那么f(1),f(2),f(4)的大小关系