作业帮 > 数学 > 作业

已知函数f(x)的定义域为R,且对于一切实数x,y都有f(x+y)=f(x)+f(y).试判断f(x)的奇偶性

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/17 14:17:26
已知函数f(x)的定义域为R,且对于一切实数x,y都有f(x+y)=f(x)+f(y).试判断f(x)的奇偶性
已知函数f(x)的定义域为R,且对于一切实数x,y都有f(x+y)=f(x)+f(y).试判断f(x)的奇偶性
解由对于一切实数x,y都有f(x+y)=f(x)+f(y).
令x=y=0
即f(0+0)=f(0)+f(0)
即f(0)=2f(0)
即f(0)=0
再令y=-x代入f(x+y)=f(x)+f(y).
得f(x+(-x))=f(x)+f(-x).
即f(x)+f(-x)=f(0)=0
即f(-x)=-f(x)
故f(x)是奇函数.