直线x+2y-3=0与圆x^2+y^2+x-6y+c=0交于P,Q两点,若以PQ为直径的圆通过原点,求C的值
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/18 01:20:44
直线x+2y-3=0与圆x^2+y^2+x-6y+c=0交于P,Q两点,若以PQ为直径的圆通过原点,求C的值
改写直线方程,得:x=3-2y.
∵P、Q都在直线x=3-2y上,∴可设点P的坐标为(3-2m,m),Q的坐标为(3-2n,n).
联立:x=3-2y、 x^2+y^2+x-6y+c=0,消去x,得:
(3-2y)^2+y^2+3-2y-6y+c=0, ∴9-12y+y^2+y^2+3-2y-6y+c=0,
∴2y^2-20y+9+c=0.显然,m、n是这个方程的两根,由韦达定理,有:
m+n=20/2=10、 mn=(9+c)/2.
∵以PQ为直径的圆过原点, ∴PO⊥QO.
PO的斜率=m/(3-2m)、 QO的斜率=n/(3-2n).
∴[m/(3-2m)][n/(3-2n)]=-1,
∴mn/[9-3(m+n)+4mn]=-1, ∴[(9+c)/2]/[9-3×10+2(9+c)]=-1,
∴(9+c)/2=21-2(9+c)=3-2c, ∴9+c=6-4c, ∴5c=-3, ∴c=-3/5.
∵P、Q都在直线x=3-2y上,∴可设点P的坐标为(3-2m,m),Q的坐标为(3-2n,n).
联立:x=3-2y、 x^2+y^2+x-6y+c=0,消去x,得:
(3-2y)^2+y^2+3-2y-6y+c=0, ∴9-12y+y^2+y^2+3-2y-6y+c=0,
∴2y^2-20y+9+c=0.显然,m、n是这个方程的两根,由韦达定理,有:
m+n=20/2=10、 mn=(9+c)/2.
∵以PQ为直径的圆过原点, ∴PO⊥QO.
PO的斜率=m/(3-2m)、 QO的斜率=n/(3-2n).
∴[m/(3-2m)][n/(3-2n)]=-1,
∴mn/[9-3(m+n)+4mn]=-1, ∴[(9+c)/2]/[9-3×10+2(9+c)]=-1,
∴(9+c)/2=21-2(9+c)=3-2c, ∴9+c=6-4c, ∴5c=-3, ∴c=-3/5.
已知直线X+2Y+m=0交圆X·X+Y·Y+X-6Y+3=0于P,Q两点,问m为何值时以PQ为直径的圆过原点
已知圆X^2+Y^2+X-6Y+M=0和直线X+Y-3=0交于P,Q两点,且以PQ为直径的圆恰过坐标原点,求实数m的值
已知X+y+x-6y+m=0 和直线x+2y-3=0 交于P、 Q两点,且以PQ为直径的圆恰过坐标原点,求实数m的值.
已知圆x^2+y^2+x-6y+m=0与直线x+2y-3=0相交于P,Q两点,O为原点,若以PQ为直径的圆经过原点O,求
已知圆x2+y2+x-6y+m=0和直线x+2y-3=0交于P,Q两点,且以PQ为直径的圆恰过坐标原点,
直线x+2y-3=0与圆x^2+y^2+x-6y+c=0交于P、Q两点,O为坐标原点,若OP垂直OQ,求C的值
直线x+2y-3=0与圆x^2+y^2+x-6y+c=0交于P,Q两点,O为坐标原点,若OP垂直OQ,求c的值
已知直线l过定点A(4,0)且与抛物线C:y²=2px(p>0)交于P、Q两点,若以PQ为直径的圆恒过原点O,
已知圆x^2+y^2+x-6y+c=0与直线x-2y+3=0交于P,Q两点,且OP=OQ(O为坐标原点),求圆的方程
已知圆x^2+y^2+x-6y+m=0与直线x+2y-3=0相交于PQ两点,若PQ为直径的圆过原点O,求实数m的值
已知直线l:y=x+b 与圆C:x方+y方-2x+4y-4=0交于AB两点,O为坐标原点. (1)若以AB为直径的圆过原
已知圆X^2+Y^2+X-6Y+M=0和直线X+2Y-3=0交于P,Q两点,且以PQ为直径的圆恰过坐标原点,求实数m的值