设函数y=f(x)(x∈R),对任意非零实数x1,x2满足f(x1x2)=f(x1)+f(x2),又f(x)在(0,+∞
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 22:30:48
设函数y=f(x)(x∈R),对任意非零实数x1,x2满足f(x1x2)=f(x1)+f(x2),又f(x)在(0,+∞)是增函数,则不等式f(x)+f(x-1/2)≤0的解集为
/>∵f(1)=f(1)+f(1),∴f(1)=0
又f(1)=f(-1)+f(-1),∴f(-1)=0
∵f(-x)=f(x)+f(-1)=f(x),∴f(x)是偶函数
∵f(x)在(0,+∞)增,那么x在[-1,1]上小于等于0
f(x)+f(x-1/2)=f(x^2-0.5x)≤0
-1≤x^2-0.5x≤1
解得1/4 (1-√(17))
再问: 不对啊老师说是错
再答: 绝对没有问题,除非是你题目打错了
又f(1)=f(-1)+f(-1),∴f(-1)=0
∵f(-x)=f(x)+f(-1)=f(x),∴f(x)是偶函数
∵f(x)在(0,+∞)增,那么x在[-1,1]上小于等于0
f(x)+f(x-1/2)=f(x^2-0.5x)≤0
-1≤x^2-0.5x≤1
解得1/4 (1-√(17))
再问: 不对啊老师说是错
再答: 绝对没有问题,除非是你题目打错了
设函数y=f(x)对任意非零实数x1,x2满足f(x1x2)=f(x1)+f(x2)
设函数y=f(x)(x∈R,且x≠0)对任意非零实数x1,x2,满足f(x1)+f(x2)=f(x1x2)
设函数y=f(x)(x属于R,且x不等于0),对任意非零实数x1,x2.满足f(x1)+f(x2)=f(x1x2)
已知函数y=f (x)(x∈R,x≠0)对任意的非零实数x1,x2,恒有f(x1x2)=f(x1)+f(x2),试判断f
已知函数y=f (x)(x∈R,x≠0)对任意的非零实数x1,x2,恒有f(x1x2)=f(x1)+f(x2)
设y=f(x)(x∈R)对任意实数x1x2,满足f(x1)+f(x2)=f(x1*x2)求证f(1)=f(-1)=0和f
已知函数f(x)(x∈R,x≠0)对任意的非零实数x1,x2,恒有f(x1x2)=f(x1)+f(x2),且当X>1,f
设函数y=f(x)(x∈R且x≠0)对定义域内任意的x1x2恒有f(x1 * x2)=f(x1)+f(x2)
定义在R上的函数f(x) (f(x)≠0)满足:对任意实数x1,x2,总有f(x1+x2)=f(x1)f(x2),且x>
(1)定义在R上的函数f(x)(f(x)≠0)满足:对任意实数x1,x2,总有f(x1+x2)=f(x1)f(x2),且
1、定义在R上的函数f(x)(f(x)≠0)满足对任意实数x1、x2都有f(x1+x2)=f(x1)f(x2)
设y=f(x)(x∈R且x≠0)时任意非0 x1和x2有f(x1x2)=f(x1)+f(x2)求证: