作业帮 > 数学 > 作业

△ABC的三内角A、B、C成等差数列,则cos^2A+cos^2C的最小为

来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 09:33:30
△ABC的三内角A、B、C成等差数列,则cos^2A+cos^2C的最小为
RT
△ABC的三内角A、B、C成等差数列,则cos^2A+cos^2C的最小为
在三角形ABC的三内角,角A,角B,角C成等差数列
从这个条件可以知道角B=60°
所以cos(A+C)=-cosB=-1/2
COS^2A+COS^2C
=(cos2A+cos2C+2)/2
=(2cos(A+C)cos(A-C)+2)/2
=cos(A+C)cos(A-C)+1
=1-cos(A-C)/2
上式要有最小值,则cos(A-C)/2要取最大值,
即A=C=60°的时候,而cos0°=1 (此时公差为0)
所以上式的最小值是1/2