已知向量OA=(λ,5),λ>0,OBk=(0,k),k∈N*,OCn=(n(2/3)^n,o),n∈N*
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/06 09:48:07
已知向量OA=(λ,5),λ>0,OBk=(0,k),k∈N*,OCn=(n(2/3)^n,o),n∈N*
已知向量OA=(λ,5),λ>0,OBk=(0,k),k∈N*,OCn=(n(2/3)^n,o),n∈N*,数列ak=|OA-OBk|^2,bn=OA·OCn
(1)求数列{ak},{bn}的通向公式
(2)数列{bn}是否存在最大项?若存在,求出最大项,若不存在,请说理
(3)若对于任意n,k∈N*,总有ak-bn>1/9 成立,求λ的取值范围
已知向量OA=(λ,5),λ>0,OBk=(0,k),k∈N*,OCn=(n(2/3)^n,o),n∈N*,数列ak=|OA-OBk|^2,bn=OA·OCn
(1)求数列{ak},{bn}的通向公式
(2)数列{bn}是否存在最大项?若存在,求出最大项,若不存在,请说理
(3)若对于任意n,k∈N*,总有ak-bn>1/9 成立,求λ的取值范围
正在为期中考试复习,就当时练练自己帮你解答吧,我高二的~
略有跳步
向量的加减和点乘应该会吧,一个向量的平方也就是这个向量的模长的平方
那么
(1)ak=(OA-OBk)^2=(λ,5-k)^2=λ^2+25+k^2-10k
bn=(λ,5)·(n(2/3)^n,o)=nλ(2/3)^n
(2)算出了bn的通向公式,就用bn-b(n-1)来比较大小
相减并化简得到2^(n-1)*(3-n)/3^n【(3-n)不是2的幂,自己算算就知道了】
显然n>3 bn1/9 成立
排出方程即可
λ^2+25+k^2-10k-nλ(2/3)^n>1/9
化简得到
9λ^2-9nλ(2/3)^n+9(25+k^2-10k)-1>0
把它看做关于λ的二次函数
可见A>0
对称轴-B/2A=n*2^n/2*3^n显然恒大于0且利用(2)的结论可得,最大值为4/9
再当λ=0时,原式变为9(25+k^2-10k)-1恒大于等于-1
结合二次函数在直角坐标系中的图像(这个你自己画图体会,无法说明)可得,λ的范围就是当9(25+k^2-10k)-1=-1(亦即k=5)且n*2^n/2*3^n=4/9(亦即n=3)时的取值范围
此时原式为9λ^2-8λ-1>0
所以此时λ∈(负无穷,-1/9)∪(1,正无穷)
一般做题不用写这么多,差不多一半就够了老师应该看得懂的~有不懂可以再问题补充中说明,我有空会再来看看的~
略有跳步
向量的加减和点乘应该会吧,一个向量的平方也就是这个向量的模长的平方
那么
(1)ak=(OA-OBk)^2=(λ,5-k)^2=λ^2+25+k^2-10k
bn=(λ,5)·(n(2/3)^n,o)=nλ(2/3)^n
(2)算出了bn的通向公式,就用bn-b(n-1)来比较大小
相减并化简得到2^(n-1)*(3-n)/3^n【(3-n)不是2的幂,自己算算就知道了】
显然n>3 bn1/9 成立
排出方程即可
λ^2+25+k^2-10k-nλ(2/3)^n>1/9
化简得到
9λ^2-9nλ(2/3)^n+9(25+k^2-10k)-1>0
把它看做关于λ的二次函数
可见A>0
对称轴-B/2A=n*2^n/2*3^n显然恒大于0且利用(2)的结论可得,最大值为4/9
再当λ=0时,原式变为9(25+k^2-10k)-1恒大于等于-1
结合二次函数在直角坐标系中的图像(这个你自己画图体会,无法说明)可得,λ的范围就是当9(25+k^2-10k)-1=-1(亦即k=5)且n*2^n/2*3^n=4/9(亦即n=3)时的取值范围
此时原式为9λ^2-8λ-1>0
所以此时λ∈(负无穷,-1/9)∪(1,正无穷)
一般做题不用写这么多,差不多一半就够了老师应该看得懂的~有不懂可以再问题补充中说明,我有空会再来看看的~
用数学归纳法证明“(n+1)(n+2)…(n+n)=2^n·1·3·5…(2n-1)(n∈N*)”时,从n=k到n=k+
已知集合A1={n|n=2k+1,k∈N,k≤5};A2={x|x=2k,k∈N,k≤3};A3={x|x=4k+1,或
已知向量OA=(cosa,sina)(a∈【-π,0】)向量m=(2,1) 向量n=(0,-根号5),且向量m⊥(O向量
已知数列an满足an=n*k^n(n属于正整数,0《k
int i,j,k,n; for(n=0;n
已知函数sum(k,n)=1^k+2^k+3^k…+n^k.计算当k=2,n=5时的结果.
{int n=2,k=0; while(k++&&n++>2); printf("%d %d\n",k,n);为什么答案
证明n*(x+1)^(n-1)=Σ(k=0到n)k*c(n,k)*x^(k-1)
证明C(0,n)+C(1,n+1)+C(2,n+2)+...+C(k,n+k)=C(k,n+k+1)
已知数列{an}满足ak+a(n-k)=2,(k,n-k∈N*),则数列{an}的前n项和Sn=
已知向量oa=[cos@,sin2】 向量m=【2,1】 n=【0,-√5】 且m垂直于【oa-n】求向量oa拜托各位大
利用数学归纳法证明“(n+1)(n+2)…(n+n)=2n×1×3×…×(2n-1),n∈N*”时,从“n=k”变到“n