如图,△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 14:14:20
如图,△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中点重合.将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.
(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;
(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=a,CQ=
a
(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;
(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=a,CQ=
9 |
2 |
(1)证明:∵△ABC是等腰直角三角形,
∴∠B=∠C=45°,AB=AC,
∵AP=AQ,
∴BP=CQ,
∵E是BC的中点,
∴BE=CE,
在△BPE和△CQE中,
∵
BE=CE
∠B=∠C
BP=CQ,
∴△BPE≌△CQE(SAS);
(2)连接PQ,
∵△ABC和△DEF是两个全等的等腰直角三角形,
∴∠B=∠C=∠DEF=45°,
∵∠BEQ=∠EQC+∠C,
即∠BEP+∠DEF=∠EQC+∠C,
∴∠BEP+45°=∠EQC+45°,
∴∠BEP=∠EQC,
∴△BPE∽△CEQ,
∴
BP
CE=
BE
CQ,
∵BP=a,CQ=
9
2a,BE=CE,
∴
a
CE=
CE
9
2a,
∴BE=CE=
3
2
2a,
∴BC=3
2a,
∴AB=AC=BC•sin45°=3a,
∴AQ=CQ-AC=
3
2a,PA=AB-BP=2a,
在Rt△APQ中,PQ=
AQ2+AP2=
5
2a.
∴∠B=∠C=45°,AB=AC,
∵AP=AQ,
∴BP=CQ,
∵E是BC的中点,
∴BE=CE,
在△BPE和△CQE中,
∵
BE=CE
∠B=∠C
BP=CQ,
∴△BPE≌△CQE(SAS);
(2)连接PQ,
∵△ABC和△DEF是两个全等的等腰直角三角形,
∴∠B=∠C=∠DEF=45°,
∵∠BEQ=∠EQC+∠C,
即∠BEP+∠DEF=∠EQC+∠C,
∴∠BEP+45°=∠EQC+45°,
∴∠BEP=∠EQC,
∴△BPE∽△CEQ,
∴
BP
CE=
BE
CQ,
∵BP=a,CQ=
9
2a,BE=CE,
∴
a
CE=
CE
9
2a,
∴BE=CE=
3
2
2a,
∴BC=3
2a,
∴AB=AC=BC•sin45°=3a,
∴AQ=CQ-AC=
3
2a,PA=AB-BP=2a,
在Rt△APQ中,PQ=
AQ2+AP2=
5
2a.
如图,△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中
△ABC和△DEF是两个等腰直角三角形,∠A=∠D=90°,△DEF的顶点E位于边BC的中点上.将△DEF绕点E旋转,使
如图,△ABC与△DEF都是等腰直角三角形,∠ACB=∠EDF=90°,且点D在AB边上,AB、EF的中
△ABC和△DEF是两个等腰直角三角形,∠A=∠D=90°,△DEF的顶点E位于边BC的中点上.
全等等腰直角三角形ABC和DEF和叠放在一起,让DEF的锐角顶点D与ABC斜边中点重合,AB=DE=4,ABC不动,
已知两个全等的等腰直角三角形△ABC、△DEF,其中∠ACB=∠DFE=90°,E为AB中点求证A
两个全等的等腰直角三角形△abc和△def,其中∠acb=dfe=90°,点e是ab的中点 怎么证明,特别是第二个小题
如图①,△ABC与△DEF都是等腰直角三角形,∠ACB=∠EDF=90°,且点D在AB边上,AB,EF的中点均为O,
如图,△ABC、△DEF是两个全等等腰直角三角形,角BAC=角PDE=90度……
有两张全等的等腰直角三角形纸片△ABC △DEF,其中∠ABC=∠DEF=90° AB=DE=4cm.将△DEF的直角顶
有两张全等的等腰直角三角形纸片△ABC,△DEF,其中∠ABC=∠DEF=90°,AB=DE=4cm.将△DEF的直角顶
如图,等腰直角三角形ABC与等腰直角三角形DEF相似.相似比为3:1,已知斜边AB=5cm,求△DEF斜边DE上的高.