证明:存在ξ,η 使得 e^(ξ-η)[f(ξ)^2+2f(ξ)f'(ξ)]=1
设f(x)在[0,1]上连续,在(0,1)内可导,证明:存在ξ∈(0,1)使得f(ξ)+f‘'(ξ)=e^ξ[f(1)e
设f(x)在[a,b]上连续可导,a>0 .证明:存在ξ,η∈(a,b),使得f'(ξ)=[(a+b)/2η]f‘(η)
f(x)在(a,b)上可微,f'(x)不等于0,0<x<b,证明:存在ξ,η∈[a,b]使得f'(ξ)=(a+b/2η)
设f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b)=1,试证存在ξ、η∈(a,b),使得eξ-η[f
设函数f(x)在区间「0,2」上连续可导,f(0)=0=f(2),证明存在ξ属于(0,2),使得f'(ξ)=2f(ξ)
设函数f(x)在[1,2]上连续,在(1,2)可导,且f(1)=1,f(2)=4,证明:至少存在一点ξ∈(1,2)使得f
设函数f(x)是周期为2012的连续函数.证明:存在ξ∈[0,2011]使得f(ξ)=f(ξ+1).
设f(x)在[0,π]上连续,(0,π)内可导,证明存在ξ∈(0,π),使得f'(ξ)sinξ+f(ξ)cosξ=0
设函数f(x)在区间[a,b]上连续,且f(a)b.证明存在ξ∈(a,b),使得f(ξ)=ξ
- f(x) 在[a,b]连续 在(a,b)上可导,证明:存在ξ,η∈(a,b),使f'(ξ)=(η^2)f'(η)/a
设f(x)在[0,π]上连续,(0,π)内可导,证明存在ξ∈(0,π),使得f'(ξ)sinξ+2f(ξ)cosξ=0
设函数f(x)在[a,b]上两阶可导,且f'(a)=f'(b)=0,证明:存在ξ∈(a,b)使得