设函数f(x)是实数集R上的增函数,令F(x)=f(x)-f(2-x).
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/11 22:51:47
设函数f(x)是实数集R上的增函数,令F(x)=f(x)-f(2-x).
(Ⅰ)判断并证明F(x)在R上的单调性;
(Ⅱ)若F(a)+F(b)>0,求证:a+b>2.
(Ⅰ)判断并证明F(x)在R上的单调性;
(Ⅱ)若F(a)+F(b)>0,求证:a+b>2.
解;(Ⅰ)F(x)在R上是增函数,现证明如下:任取x1,x2∈R,且x1<x2,则
F(x1)-F(x2)=[f(x1)-f(2-x1)]-[f(x2)-f(2-x2)]=[f(x1)-f(x2)]+[f(2-x2)-f(2-x1)];
∵f(x)是实数集R上的增函数,且x1<x2,则f(x1)-f(x2)<0,由x1<x2,得-x1>-x2,∴2-x1>2-x2,∴f(2-x1)>f(2-x2),∴f(2-x2)-f(2-x1)<0,
∴[f(x1)-f(x2)]+[f(2-x2)-f(2-x1)]<0;即F(x1)<F(x2);∴F(x)是R上的增函数.
(Ⅱ)证明:∵F(a)+F(b)>0,∴F(a)>-F(b);
由F(x)=f(x)-f(2-x)知,-F(b)=-[f(b)-f(2-b)]=f(2-b)-f(b)=f(2-b)-f[2-(2-b)]=F(2-b),∴F(a)>F(2-b);
又F(x)是实数集R上的增函数,所以a>2-b,即a+b>2.
F(x1)-F(x2)=[f(x1)-f(2-x1)]-[f(x2)-f(2-x2)]=[f(x1)-f(x2)]+[f(2-x2)-f(2-x1)];
∵f(x)是实数集R上的增函数,且x1<x2,则f(x1)-f(x2)<0,由x1<x2,得-x1>-x2,∴2-x1>2-x2,∴f(2-x1)>f(2-x2),∴f(2-x2)-f(2-x1)<0,
∴[f(x1)-f(x2)]+[f(2-x2)-f(2-x1)]<0;即F(x1)<F(x2);∴F(x)是R上的增函数.
(Ⅱ)证明:∵F(a)+F(b)>0,∴F(a)>-F(b);
由F(x)=f(x)-f(2-x)知,-F(b)=-[f(b)-f(2-b)]=f(2-b)-f(b)=f(2-b)-f[2-(2-b)]=F(2-b),∴F(a)>F(2-b);
又F(x)是实数集R上的增函数,所以a>2-b,即a+b>2.
设函数f(x)是实数集R上的单调增函数,令F(x)=f(x)-f(2-x).
设函数f x是实数R上的增函数令f x=f x-f( 2-x) 1,求证f x在R上是增函数 2,若f (x1)+f(
设函数f(x)是实数集R上的增函数,令F(x)=f(x)-f(2-x) 证明F(x)在R上是增函数
设f(x)是定义在实数集R上的函数,且满足f(1)=-1/2,f(2)=-1/4,f(x+2)-f(x+2)f(x)-f
设函数f(x)是(0,正无穷)上的增函数,令F(x)=f(x)-f(1/x)
完整设f(x)是定义在实数集R上的函数,且满足f(-x)=f(x),f(x)在区间(-∞,0]上是增函数,并且f(2a&
设f(x)是定义在R上的增函数,f(xy)=f(x)+f(y),若f(3)=1,求不等式f(x)-f(x-2)>1的解集
设f(x)是R上的函数,且满足f(0)=1,并且对任意实数x,y,有f(x-y)=f(x)-y(2x-y+1),求f(x
设f(x)是定义在R上的增函数,f(xy)=f(x)+f(y),f(3)=1,求解不等式f(x)+f(x-2)>1.
设函数f(x)是定义在R上的增函数,令F(x)=f(x)-f(2-x) (1) 求证:F(x)是R上的增函数; (2)
设f(x)是定义在R上的函数,且对任意实数x,有f(1-x)=x2-3x+3.
已知:f(x)是定义在R上的增函数,令F(x)=f(x)-f(a-x) 证明:y=F(x)的图像关于点(a/2,0)成中