为什么数学上将椭圆定义为“平面内与两定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹”
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/20 16:55:37
为什么数学上将椭圆定义为“平面内与两定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹”
椭圆是从生活中提取出的图形,数学家为什么就这样定义椭圆了呢?
如何证明所有“椭圆”都能找到两定点,使所有椭圆上的点与两定点F1、F2的距离的和等于常数?
椭圆是从生活中提取出的图形,数学家为什么就这样定义椭圆了呢?
如何证明所有“椭圆”都能找到两定点,使所有椭圆上的点与两定点F1、F2的距离的和等于常数?
我是高三的…热爱数学,你这个问题很有水平,你可以在百度上查“椭圆定义”,但都解决不了你的问题…我想,数学上有一个规则,就是基本定义是不需要理由的,比如一加一为什么是二,为什么三角形内角和是180度…我不认为这个解释很好,但确实是这样的,概念的定义是科学家在研究其性质之后做出的,而不是简单的生活体验,希望对你有帮助.我会关注你的问题,希望有更好的解释.
补充一下楼上的圆锥曲线第二定义,就是平面上到定点F与定直线(称为准线)的距离比值一定的点的轨迹.椭圆这个比值e ( 0
再问: 好像是这样的,定义这东西是很难推出充要性的。如果没有更好的回答就选你啦。
补充一下楼上的圆锥曲线第二定义,就是平面上到定点F与定直线(称为准线)的距离比值一定的点的轨迹.椭圆这个比值e ( 0
再问: 好像是这样的,定义这东西是很难推出充要性的。如果没有更好的回答就选你啦。
为什么不在平面内,与两个定点F1,F2的距离的和等于常数(大于F1F2)的点的轨迹不叫做椭圆?
平面内与两定点F1,F2的距离之差的绝对值等于常数(大于F1F2)的点的轨迹是什么
椭圆定义中:平面内与两个定点 的距离之和等于常数(大于 )的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点
平面内到两个定点F1 F2的距离的差的绝对值等于常数(小于F1F2)的动点的轨迹叫做双曲线. 可是
平面内一动点M到两定点F1、F2的距离之和为常数2a,则点M的轨迹为( ) A椭圆 B圆 C无轨迹
椭圆的定义中,F1,F2到点的距离和等于常数(大于|F1F2|) 请问为什么 MF1+MF2=2a?
平面内的动点的轨迹的椭圆是椭圆必须满足的2个条件:①到两个定点F1、F2的距离等于2a② 2a>│F1F2│
设曲线C是平面内的两个定点F1、F2(|F1F2|=2c>0)的距离的平方和为常数2a^2(a>0)点的轨迹,请研究曲线
平面内到定点F1(-1,0)与F2(1,0)的距离之差的绝对值等于为2的点的轨迹方程是?
三段论“平面内到两定点F1,F2的距离之和为定值的点的轨迹是椭圆(大前提),平面内动点M到两定点F1(-2,0)F2(2
平面内两定点F1(-2,0),F2(2,0)的距离之差的绝对值等于6的点的轨迹是()A椭圆B双曲线C圆D不存在
平面内与两定点的距离之和为定值的点的轨迹是椭圆对吗?