判断题,设T为n维线性空间V的线性变换,V中向量组α1,α2,...,αm线性无关,则Tα1,Tα2,...Tαm线性无
设α1,α2,…,αs是线性空间v的一组向量,T是v的一个线性变换,证明:T(L(α1,α2,…,αs))=L(Tα1,
设T为数域P上n维线性空间V的一个线性变换,且T^2=I.证明:1.T特征值只能为1或-1;
设T是V的一个线性变换,如果T^(k-1)*α≠0,但T^k*α=0,证明a,Ta,.T^(k-1)a线性无关
线性变换矩阵基α=(a1,...,an),基β=(b1,...,b2)是线性空间V的两组基,α到β的过度矩阵为T,线性变
设T是数域P上n维线性空间V的一个线性变换,且T^2=T,R(T)表示T的值域,N(T)表示T的零空间或核,
设n维列向量组α1,…,αm(m<n)线性无关,则n维列向量组β1,…,βm线性无关的充分必要条件为( )
设V是数域P上n维线性空间,t是V的一个线性变换,t的特征多项式为f(a).证明:f(a)在p上不可约的充要条件是V无关
一道线性代数证明题设σ1,σ2,...,σs为s个两两不同的线性变换,证明在线性空间V中存在向量α,使得σ1α,σ2α,
设α是n维线性空间 V的线性变换,那么 α是双射 α是单位变换(×)
v是数域p上的n维线性空间,T是v的线性变换.证明,存在v的线性变换S,使得TST=T
设向量组α1,α2,...,αn中,前n-1个向量线性相关,后n-1个向量线性无关,试讨论:
求一道线性代数的题.设向量组α1,α2,.αn线性无关,讨论向量组β1,β2...βn的线性相关性