抽屉原理的题目1.证明:在任意5个整数中,一定能取出3个数,使它们的和能被3整除.2.某校派出学生204人上山植树153
来源:学生作业帮 编辑:神马作文网作业帮 分类:数学作业 时间:2024/11/12 22:28:12
抽屉原理的题目
1.证明:在任意5个整数中,一定能取出3个数,使它们的和能被3整除.
2.某校派出学生204人上山植树15301棵,其中最少一人植树50棵,最多一人植树100棵,证明至少有5人植树的棵树相同.
1.证明:在任意5个整数中,一定能取出3个数,使它们的和能被3整除.
2.某校派出学生204人上山植树15301棵,其中最少一人植树50棵,最多一人植树100棵,证明至少有5人植树的棵树相同.
1.证明:
任一整数被3除的余数只有3种可能:或者整除,则余数为0,或者不能整除,则余数为1或2.所以,我们构造3个抽屉,分别放置形如3m、3m+1、3m+2的数,其中m为整数,这三类数也可称为余0类,余1类,余2类.
按余0类,余1类,余2类构造三个盒子,由抽屉原理,必有一盒子放有[5/3]+1=2个关于3的余数相同的数,则另外3个盒中放的3个数,或者同属一类,这时结论显然成立;若2个属一类,另1个属另一类,这时从三类不同余数的盒子,各抽一个数,则此三数和必为3的倍数.
命题得证.
2. 证明:
按植树棵数50,51,...,100构造51个盒子,由抽屉原理,必至少一个盒子里有4个学生.
而如果恰好每个盒子里4个学生,则总植树棵数为
4*(50+51+...+100)=4*150*51/2=4*3825=15300
任一整数被3除的余数只有3种可能:或者整除,则余数为0,或者不能整除,则余数为1或2.所以,我们构造3个抽屉,分别放置形如3m、3m+1、3m+2的数,其中m为整数,这三类数也可称为余0类,余1类,余2类.
按余0类,余1类,余2类构造三个盒子,由抽屉原理,必有一盒子放有[5/3]+1=2个关于3的余数相同的数,则另外3个盒中放的3个数,或者同属一类,这时结论显然成立;若2个属一类,另1个属另一类,这时从三类不同余数的盒子,各抽一个数,则此三数和必为3的倍数.
命题得证.
2. 证明:
按植树棵数50,51,...,100构造51个盒子,由抽屉原理,必至少一个盒子里有4个学生.
而如果恰好每个盒子里4个学生,则总植树棵数为
4*(50+51+...+100)=4*150*51/2=4*3825=15300
证明,任意7个整数中必存在4个数,他们的和能整除4
证明:从任意200个整数中,可以选出100个,使这100个数的和能被100整除.
任给5个数,说明其中一定能选出3个数,使它们的和能被3整除.
证明:从任意给定的n个自然数中总可以找到k个数,使它们的和能被n整除
从1,2,3,----47,49这50个数中取出若干个数,使其中任意两个数的和都不能被7整除,则最多能取出多少个
从101至110这10个整数中,选3个数使它们的和能被3整除,则不同的选法共有()种.
几个关于数论的证明!1 证明:任意给出5个整数中,必有3个数之和被3整除.2证明:任意给定自然数M,一定存一个M的倍数N
证明:在任意11个整数中必有6个整数的和能被6整除,但任意10个整数未必有此性质.
用鸽笼原理证明:在任意给出的n+2个正整数中必有两个数,它们的差或和能被2n整除.
从1~50这50个数中,取出若干个数,使其任意两个数的和都不能被7整除,则最多能取出多少个数?
任意五个自然数,证明其中一定有3个数 和能被3整除
从自然数1、2、3、...2011、2012中,最多可取出()个数,使所取出的数中任意三个数的和能被18整除